Posters session

1	Kishan Wimalawarne	University of Tokyo	Generalization bounds of low-rank PINN
2	Vladimir Baturin	CNRS - LINK	Al-assisted discovery of molten salts
3	Akimitsu Ishii	NIMS	CALPHAD-coupling Phase-field Simulation of Liquid-phase Sintering: Application to Nd-Fe-B Sintered Magnets
4	Takumi Morino	Yokohama National University	Direct coupling of CALPHAD databases with the phase-field method
5	Machiko Ode	NIMS	From TDB to Python Format: Simplifying Gibbs Energy Calculations
6	Ayako Ikeda	NIMS	Hign-throughput experiments for constructing phase diagrams and propety databases using composition and temperature gradient samnles
7	Auguste de Lambilly	Ecole Polytechnique	A general framework for structured object generation under geometrical constraints
8	Chancel Mawalala Moundounga	CNRS	Experimental, DFT, stability and site occupancies investigation of selected TCPA15 phases
9	Shengzhou Li	NIMS	Large-scale DFT and machine learning assisted theoretical investigation on the interface in supported nanoparticles
10	Amran Mahfudh Yatmeidhy	NIMS	Unsupervised approach for structural characteristic analysis of native defects in GaN
11	Christophe Bajan	NIMS	Active Learning for Materials Science application.
12			