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A scikit-learn map

Source: https://scikit-learn.org/
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Mathematical setting



Numerical formulation

Vectors and matrices

• Each experiment is defined by initial conditions→ x and a result→ y .

• Each observation is defined by an individual→ x and a feature→ y .

• For computational purposes, x ∈ Rd and y ∈ R.

• Many repetitions of the experiment/observation provide
(x1, y1), . . . , (xn, yn).

• Data matrix X =


x1 in raw

...
xn in raw

 (size n × d) and vector of outputs


y1

...
yn

.
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Numerical formulation

Goal

1. Classification/Regression Given xnew , “predict” i.e. approximate
ynew : ynew ≈ f (xnew ).

2. Clustering When yi ’s are not observed, gather xi ’s that are similar:
{x1, x3, x4, . . .} – {x2, x7, x11, . . .} – {x5, x13, x22, . . .}.

Classification and clustering are roughly similar except that no information
concerning the group is available for clustering.

Source: https://blog.bismart.com
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Mathematical formulation

Randomness

• (xi , yi ) is a realization of a random pair (Xi ,Yi ).
• Why randomness? Because yi cannot be computed only based on xi :

• yi is noisy and does not reflect actually our desire.
• xi is incomplete and a perfect description is out of reach.

Statistics

• All (Xi ,Yi )’s are independent and have the same distribution.
• We are interested in the expected behavior: overall true now and in the

future.
1. Classification/Regression

P (f (Xnew ) is close to Ynew ) = E [similarity (f (Xnew ),Ynew )] .

2. Clustering

P (Xnew is similar to Xother when Xnew and Xother fall in the same group)

= E [similarity (Xnew ,Xother ) when Xnew and Xother fall in the same group] .

• The distribution of (Xi ,Yi )’s is unknown but. . .

• By the law of large numbers,
1
n

∑n
i=1 similarity (f (Xi ),Yi )

a.s.−−−→
n→∞

E [similarity (f (Xnew ),Ynew )]. 4



Supervised learning



Supervised learning

Two methodologies

• We observe inputs and outputs: (X1,Y1), . . . , (Xn,Yn).

• Let ` be a loss (i.e. a dissimilarity) function.
• Goal Find f such that E [` (f (Xnew ),Ynew )] is minimal.

• Classification ` (f (Xnew ),Ynew ) =

{
1 if f (Xnew ) 6= Ynew

0 if f (Xnew ) = Ynew
.

• (L2) Regression ` (f (Xnew ),Ynew ) = (Ynew − f (Xnew ))2.
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Supervised learning

Plug-in estimator

• Bayes minimizer: f ?(x) = L
(
E
[
Ynew

∣∣ Xnew = x
])

, where L is known.

• Estimator: f̂ (x) = L
(
Ê
[
Ynew

∣∣ Xnew = x
])

.

• Needs statistics.
• Often:

• We have to model the data distribution.
• We resort to simple and non-robust estimators.
• We are quite limited (the Bayes estimator is not always explicit).

• Examples Parametric models (LDA, QDA, Logistic Regression, Linear
Regression), kernel methods (k -Nearest Neighbors, Trees, Random
Forests).
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Supervised learning

Empirical Risk Minimization

• By the law of large numbers: 1
n

∑n
i=1 ` (f (Xi ),Yi ) ≈ E [` (f (Xnew ),Ynew )].

• Estimator: f̂ such that 1
n

∑n
i=1 `

(
f̂ (Xi ),Yi

)
is minimal.

• Needs optimization tools.
• Sometimes:

• We have to design efficient optimization algorithms (convex optimization).
• We have to settle for a good algorithm applied in an inadequate setting

(non-convex optimization).

• Examples Boosting, Support Vector Machines, Neural Networks.
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Discriminant analysis
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Discriminant analysis

The method

• For binary or multiclass classification only.

• Assumption on data:Xnew
∣∣ Ynew = • ∼ N (µ,Σ) , P(Ynew = •) = π,

Xnew
∣∣ Ynew = • ∼ N (µ,Σ) , P(Ynew = •) = π,

for unknown µ, µ,Σ,Σ, π, π.

• The Bayes classifier draws a parabolic frontier:

f ?(x) =


• if 1

2 x>
(
Σ−1 − Σ−1) x +

(
Σ−1µ− Σ−1µ

)>
x + . . .

+ log
(
π
π

)
≥ 0

• otherwise.

.

• Plug-in estimation via Maximum Likelihood: closed-form expressions for
µ̂, µ̂, Σ̂, Σ̂, π̂, π̂.
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Discriminant analysis

What if Σ = Σ?

• The Bayes classifier draws a hyperplane frontier:

f ?(x) =

• if (µ− µ)> Σ−1x + · · ·+ log
(
π
π

)
≥ 0

• otherwise.

• π
π

translates the hyperplane frontier.

• If π = π, the Bayes classifier is a
minimum-Mahalanobis-distance-to-center classifier.

Pros and cons

• It is computationally tractable (OK in high dimension and with large
amount of data).

• It is very restrictive (categorical data. . . ).

• It is not robust.

• It is not very expressive.
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Logistic Regression
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Logistic Regression

The method

• For binary or multiclass classification only.

• Assumption on data:

log

(
P
(
Ynew = •

∣∣ Xnew
)

P
(
Ynew = •

∣∣ Xnew
)) = w>Xnew + b,

for unknown w , b.

• The Bayes classifier draws a hyperplane frontier:

f ?(x) =

• if w>x + b ≥ 0

• if w>x + b < 0
.

• Plug-in estimation via Regularized Maximum Likelihood: (ŵ , b̂) such that

1
n

n∑
i=1

log
(

1 + e−Yi (ŵ
>Xi+b̂)

)
+
λ

2
‖ŵ‖2

is minimal.

• Parameter: regularization coefficient λ > 0. 12



Logistic Regression

Pros and cons

• It is robust.

• It is computationally tractable (OK in high dimension and with large
amount of data).

• It is not very expressive.
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Gradient boosting

Source: https://datascience.eu
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Gradient boosting

The method

• For binary classification and regression.

• No assumption on data.

• Combination of simple estimators (weak learners):

f̂ (x) = f̂1(x) + · · ·+ f̂T (x) such that
1
n

n∑
i=1

`
(

f̂ (Xi ),Yi

)
is almost minimal.

• Iterative procedure: f̂t+1 is such that

1
n

n∑
i=1

`
(

f̂1(Xi ) + · · ·+ f̂t (Xi ) + f̂t+1(Xi ),Yi

)
is almost minimal.

• Similar to gradient descent:

f̂t+1(Xi ) ≈ −
η

normalization
∂`

∂x
(f̂1(Xi ) + · · ·+ f̂t (Xi ),Yi ).
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Gradient boosting

The method

• The case of L2 regression: f̂t+1(Xi ) ≈ Yi − (f̂1(Xi ) + · · ·+ f̂t (Xi )).

• Parameters: number of simple estimators T , shrinkage coefficient
η ∈]0, 1].

Pros and cons

• It is robust and efficient.

• It is fairly computationally tractable.

• It is very expressive.

• In practice, it has more than two parameters.
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Decision tree

Source: https://www.researchgate.net
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Decision tree

The method

• For multiclass classification and regression.

• No assumption on data.

• Data dependent partitioning of the input space: x ∈ Cell1 or Cell2 . . ..

• Partition implemented as a binary tree.

• Piece-wise constant estimator: f̂ (x) = Valuek for x ∈ Cellk .

• Cells and values are determined in order to maximize the output
homogeneity.

• Parameters: size of the tree (i.e. number of cells).

Pros and cons

• It is computationally tractable.

• It is very expressive.

• It is prone to overfitting.

• It is used in gradient boosting with few cells.
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Random forest

Source: https://www.tibco.com
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Random forest

The method

• For multiclass classification and regression.

• No assumption on data.

• Combination of decision trees:

f̂ (x) =
tree1(x) + · · ·+ treeT (x)

T
,

such that trees are roughly independent.
• Trees are learned on bootstrap samples.
• Construction of partitions is perturbed by noise.

• Parameters: number of trees T , size of trees, level of noise in partitions
building.
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Random forest

Pros and cons

• It is robust and efficient.

• It is fairly computationally tractable.

• It is very expressive.

• Construction is parallelizable.

• In practice, it has many parameters.
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To go further

Feature importance and selection

• It is mainly model-dependent.
• In-model importance and post-selection:

• Feature weights for linear models.
• Contribution to the score for decision trees.

• Iterative procedure: score improvement when adding a feature.

• In-model importance and in-selection: sparse regularization for linear
models.

Multiclass problems

• Natively handled by some methods: k -Nearest neighbors, trees, random
forests, neural networks.

• Others are mainly for binary classification: linear models, boosting,
Support Vector Machines.

• Four strategies:
• Binary encoding of the class number + dlog2(# classes)e classifiers.
• One versus One +

(# classes
2

)
classifiers.

• One versus Rest + # classes classifiers.
• Hierarchical One versus Rest + # classes− 1 classifiers. 22



Evaluation and selection

Metrics

• It depends on what is important for you but is not necessarilly reflected in
the loss `.

• Accuracy, balanced accuracy, top-k accuracy.

• Area under the ROC curve, F1 score.

• Mean squared error, R2 score.

Generalization and model selection

• Cross-validation.

• Grid or random search.

• Regularization path.

Source: https://medium.com 23
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Clustering



Clustering

Three methodologies

• We observe only inputs: X1, . . . ,Xn.

• Goal Find a partition of the space {A,A} such thatXnew ∈ A,Xother ∈ A ⇐⇒ Xnew and Xother are similar;

Xnew ∈ A,Xother ∈ A ⇐⇒ Xnew and Xother are similar.

The latent variable model

• Partial observation in the classification setting: (X1,Y1), . . . , (Xn,Yn),
Y1 = • or •.

• Expected clustering (≈ Bayes classifier):

A =
{

x : P
(
Ynew = •

∣∣ Xnew = x
)
≥ P

(
Ynew = •

∣∣ Xnew = x
)}
,

A is the rest.

• Estimator:

Â =
{

x : P̂
(
Ynew = •

∣∣ Xnew = x
)
≥ P̂

(
Ynew = •

∣∣ Xnew = x
)}
.
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Clustering

The latent variable model

• Needs statistics.
• In practice:

• We have to model the data distribution.
• We resort to simple and non-robust estimators.
• We are very limited.

• Examples Soft k -Means.
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Clustering

Empirical Risk Minimization

• For a dissimilarity function `, find {A,A} such that

E [`(Xnew ,Xother )1Xnew∈A,Xother∈A or Xnew∈A,Xother∈A]

is minimal.

• By the law of large numbers:

1
2

∑
1≤i,j≤n

`(Xi ,Xj )

[
1Xi∈A,Xj∈A

#X` ∈ A
+
1Xi∈A,Xj∈A

#X` ∈ A

]
≈ E [`(Xnew ,Xother )1···] .

• Estimator: {Â, Â} such that 1
n

∑n
i=1 `(Xnew ,Xother )1··· is minimal.

• Needs optimization tricks.
• In practice:

• We have to change the optimization problem because it is not tractable
(NP-hard).

• We have to design a simple and non-optimal iterative procedure because the
optimization problem it is not tractable (NP-hard).

• Examples k -means, spectral clustering, hierarchical clustering.
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Clustering

Density-based approaches

• Implicitly estimate the density of Xnew .

• Detect the modes and set automatically the number of groups.

• Needs intuition and geometry.
• In practice:

• We have only an intuitive understanding.
• We have to set a density parameter (neighborhood size, bandwith).

• Examples DBSCAN, OPTICS, Mean shift.
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Soft k -means
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Soft k -means

The method

• Partial observation in the classification setting: (X1,Y1), . . . , (Xn,Yn).

• Assumption on data:Xnew
∣∣ Ynew = • ∼ N (µ,Σ) , P(Ynew = •) = π,

Xnew
∣∣ Ynew = • ∼ N (µ,Σ) , P(Ynew = •) = π,

for unknown µ, µ,Σ,Σ, π, π.

• A posteriori distribution:

P (Ynew = •|Xnew = x) =
πϕ(x)

πϕ(x) + πϕ(x)
= p(x).

• Plug-in estimation via Maximum Likelihood: π̂, π̂, ϕ̂, ϕ̂ such that

n∑
i=1

log (π̂ϕ̂(Xi ) + π̂ϕ̂(Xi ))

is maximal.
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Soft k -means

The method

• Proxy maximization:

E

[
n∑

i=1

log
(

density(X1,Zt,1)
(Xi ,Zt,i )

) ∣∣ X1, . . . ,Xn

]

=
n∑

i=1

[p̂t (Xi ) log (π̂t+1ϕ̂t+1(Xi )) + (1− p̂t (Xi )) log (π̂t+1ϕ̂t+1(Xi ))] ,

where Zt,i
∣∣ Xi = x has the distribution of Ynew

∣∣ Xnew = x estimated with
π̂t , π̂t , ϕ̂t , ϕ̂t .

• Estimator: Â =
{

x : p̂t (x) ≥ 1
2

}
.
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Soft k -means

Iterative algorithm

1. Compute p̂t (X1), . . . , p̂t (Xn) with π̂t , π̂t , ϕ̂t , ϕ̂t .

2. π̂t+1 = 1
n

∑n
i=1 p̂t (Xi ).

3. µ̂t+1 = empirical mean weighted by p̂t (X1), . . . , p̂t (Xn).

4. Σ̂t+1 = empirical covariance centered at µ̂t+1 and weighted by
p̂t (X1), . . . , p̂t (Xn).

5. Same for π̂t+1, µ̂t+1, Σ̂t+1 with (1− p̂t (X1)), . . . , (1− p̂t (Xn)).

Pros and cons

• It is a very simple and cheap iterative algorithm.

• It is suboptimal (does not necessarily return the MLEs).

• It is very sensitive to initialization µ̂0 and µ̂0 (in practice, it is initialized
with k -means++ output).
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k -means

Source: https://scikit-learn.org
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k -means

The method

• No assumption on data.

• ERM with dissimilarity `(x , x ′) = ‖x − x ′‖2
2: minimize

1
2

∑
1≤i,j≤n

‖Xi − Xj‖2
2

[
1Xi∈Â,Xj∈Â

#X` ∈ Â
+
1Xi∈Â,X̂j∈Â

#X` ∈ Â

]

=
n∑

i=1

[
‖Xi − µ̂‖2

21Xi∈Â + ‖Xi − µ̂‖2
21Xi∈Â

]
,

with µ̂ = 1
#X`∈Â

∑n
i=1 Xi1Xi∈Â .

• Alternating procedure (Lloyd’s algorithm):
1. Find {Â, Â} with µ̂ and µ̂ fixed: Voronoi partitioning.
2. Compute µ̂ and µ̂ with fixed partition {Â, Â}.

• Estimator: Â = {x : ‖x − µ̂‖ ≤ ‖x − µ̂‖}.

33



k -means

Iterative algorithm

1. p̂t (Xi ) = 1‖Xi−µ̂t‖≤‖Xi−µ̂t‖.

2. µ̂t+1 = empirical mean weighted by p̂t (X1), . . . , p̂t (Xn).

3. Same for µ̂t+1 with (1− p̂t (X1)), . . . , (1− p̂t (Xn)).

Connection with soft k -means

• Hard assignment: p̂t (x) = 1... instead of P̂(Ynew = •
∣∣ Xnew = x).

• No a priori in partitioning (or π̂t+1 = 1
2 ).

• No variance (or Σ̂t+1 → 0).

Pros and cons

• It is a simple and cheap iterative algorithm.

• It is suboptimal (does not necessarily return the optimal partition).

• It is very sensitive to initialization µ̂0 and µ̂0: k -means++.

• Groups are convex, not hierarchically structured.
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Agglomerative clustering

Source: https://quantdare.com
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Agglomerative clustering

The method

• No assumption on data.
• Iterative procedure:

1. Start with n groups: a point = a group.
2. Iteratively merge nearest groups.

• Famous distances between groups A and A:
• Single linkage:

d(A,A) = min
x∈A,x∈A

‖x − x‖.

• Ward’s criterion:

d(A,A) = Inertia(A∪A)−Inertia(A)−Inertia(A) =
Size(A)Size(A)

Size(A) + Size(A)
‖µ−µ‖2.

Connection with k -means

• With Ward’s criterion: tend to minimize the total inertia
n∑

i=1

[
‖Xi − µ̂‖2

21Xi∈Â + ‖Xi − µ̂‖2
21Xi∈Â

]
with a hierarchical procedure.
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Agglomerative clustering

Pros and cons

• It is a simple iterative algorithm.

• It is suboptimal (does not necessarily return the optimal partition) but
provides a hierarchical structure of groups.

• It is deterministic given X1, . . . ,Xn.

• Groups may be non-convex.
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DBSCAN

Source: https://www.researchgate.net
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DBSCAN

The method

• Density Based Spatial Clustering and Applications with Noise.

• No assumption on data.

• Iterative growing and birth of groups.
• Three types of points:

1. Core points (at least m neighbors with a distance ε).
2. Reachable points (non-core points in the ε-neighborhood of a core point).
3. Outliers.

• Parameters: number of neighbors m and radius ε.

• Movie.

Connection with agglomerative clustering

• With m = 2, DBSCAN is similar to single linkage with a dendrogram cut
at ε.
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DBSCAN

Pros and cons

• It is a simple iterative algorithm.

• No need to specify the number of groups.

• Groups may be non-convex.

• It is barely sensitive to initialization (for reachable points).

• It cannot detect groups with different densities: OPTICS (Ordering Points
To Identify the Clustering Structure).
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Evaluation and selection

Metrics

• Global: inertia

I =
n∑

i=1

[
‖Xi − µ̂‖2

21Xi∈Â + ‖Xi − µ̂‖2
21Xi∈Â

]
.

• Individual and global: silhouette coefficient

S =
1
n

n∑
i=1

bi − ai

max(ai , bi )
,

where ai = average distance of Xi to its group and bi = average
distance of Xi to the nearest group.

• Make sens for convex groups.

Model selection

• The elbow method on inertia.

• Analyzing the silhouette coefficient: example.
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Evaluation and selection

Source: https://scikit-learn.org 42
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Evaluation and selection

Source: https://scikit-learn.org 43
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What’s next?



What’s next?

Other learning domains

• Neural networks.

• Dimensionality reduction.

• Data preprocessing.

• Time series.

• Reinforcement learning.

• Data generation.

• Active learning.

• Domain adaptation.

• Image and natural language processing.

• Causality.

• Visualization.

• . . .
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