A concise overview of classification and clustering methods

Maxime Sangnier
GDR IAMAT - May 31, 2022

Sorbonne Université, CNRS, LPSM, Paris, France

A scikit-learn map

Source: https://scikit-learn.org/

Mathematical setting

Numerical formulation

Vectors and matrices

- Each experiment is defined by initial conditions $\rightarrow x$ and a result $\rightarrow y$.
- Each observation is defined by an individual $\rightarrow x$ and a feature $\rightarrow y$.
- For computational purposes, $x \in \mathbb{R}^{d}$ and $y \in \mathbb{R}$.
- Many repetitions of the experiment/observation provide $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Data matrix $\mathbf{X}=\left(\begin{array}{c}x_{1} \text { in raw } \\ \vdots \\ x_{n} \text { in raw }\end{array}\right)($ size $n \times d)$ and vector of outputs $\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$.

Numerical formulation

Goal

1. Classification/Regression Given $x_{\text {new, }}$ "predict" i.e. approximate $y_{\text {new }}: y_{\text {new }} \approx f\left(x_{\text {new }}\right)$.
2. Clustering When y_{i} 's are not observed, gather x_{i} 's that are similar:

$$
\left\{x_{1}, x_{3}, x_{4}, \ldots\right\}-\left\{x_{2}, x_{7}, x_{11}, \ldots\right\}-\left\{x_{5}, x_{13}, x_{22}, \ldots\right\} .
$$

Classification and clustering are roughly similar except that no information concerning the group is available for clustering.

Mathematical formulation

Randomness

- $\left(x_{i}, y_{i}\right)$ is a realization of a random pair $\left(X_{i}, Y_{i}\right)$.
- Why randomness? Because y_{i} cannot be computed only based on x_{i} :
- y_{i} is noisy and does not reflect actually our desire.
- x_{i} is incomplete and a perfect description is out of reach.

Statistics

- All $\left(X_{i}, Y_{i}\right)$'s are independent and have the same distribution.
- We are interested in the expected behavior: overall true now and in the future.

1. Classification/Regression

$$
\mathbb{P}\left(f\left(X_{\text {new }}\right) \text { is close to } Y_{\text {new }}\right)=\mathbb{E}\left[\text { similarity }\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)\right] .
$$

2. Clustering
$\mathbb{P}\left(X_{\text {new }}\right.$ is similar to $X_{\text {other }}$ when $X_{\text {new }}$ and $X_{\text {other }}$ fall in the same group $)$
$=\mathbb{E}$ [similarity $\left(X_{\text {new }}, X_{\text {other }}\right)$ when $X_{\text {new }}$ and $X_{\text {other }}$ fall in the same group $]$.

- The distribution of $\left(X_{i}, Y_{i}\right)$'s is unknown but...
- By the law of large numbers,
$\frac{1}{n} \sum_{i=1}^{n}$ similarity $\left(f\left(X_{i}\right), Y_{i}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \mathbb{E}\left[\right.$ similarity $\left.\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)\right]$.

Supervised learning

Supervised learning

Two methodologies

- We observe inputs and outputs: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- Let ℓ be a loss (i.e. a dissimilarity) function.
- Goal Find f such that $\mathbb{E}\left[\ell\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)\right]$ is minimal.
- Classification $\quad \ell\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)=\left\{\begin{array}{ll}1 & \text { if } f\left(X_{\text {new }}\right) \neq Y_{\text {new }} \\ 0 & \text { if } f\left(X_{\text {new }}\right)=Y_{\text {new }}\end{array}\right.$.
- (L^{2}) Regression $\quad \ell\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)=\left(Y_{\text {new }}-f\left(X_{\text {new }}\right)\right)^{2}$.

Supervised learning

Plug-in estimator

- Bayes minimizer: $f^{\star}(x)=L\left(\mathbb{E}\left[Y_{\text {new }} \mid X_{\text {new }}=x\right]\right)$, where L is known.
- Estimator: $\hat{f}(x)=L\left(\hat{\mathbb{E}}\left[Y_{\text {new }} \mid X_{\text {new }}=x\right]\right)$.
- Needs statistics.
- Often:
- We have to model the data distribution.
- We resort to simple and non-robust estimators.
- We are quite limited (the Bayes estimator is not always explicit).
- Examples Parametric models (LDA, QDA, Logistic Regression, Linear Regression), kernel methods (k-Nearest Neighbors, Trees, Random Forests).

Supervised learning

Empirical Risk Minimization

- By the law of large numbers: $\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(X_{i}\right), Y_{i}\right) \approx \mathbb{E}\left[\ell\left(f\left(X_{\text {new }}\right), Y_{\text {new }}\right)\right]$.
- Estimator: \hat{f} such that $\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{f}\left(X_{i}\right), Y_{i}\right)$ is minimal.
- Needs optimization tools.
- Sometimes:
- We have to design efficient optimization algorithms (convex optimization).
- We have to settle for a good algorithm applied in an inadequate setting (non-convex optimization).
- Examples Boosting, Support Vector Machines, Neural Networks.

Discriminant analysis

Discriminant analysis

The method

- For binary or multiclass classification only.
- Assumption on data:

$$
\begin{cases}X_{\text {new }} \mid Y_{\text {new }}=\bullet \sim \mathcal{N}(\mu, \Sigma), & \mathbb{P}\left(Y_{\text {new }}=\bullet\right)=\pi \\ X_{\text {new }} \mid Y_{\text {new }}=\bullet \sim \mathcal{N}(\mu, \Sigma), & \mathbb{P}\left(Y_{\text {new }}=\bullet\right)=\pi\end{cases}
$$

for unknown $\mu, \mu, \Sigma, \Sigma, \pi, \pi$.

- The Bayes classifier draws a parabolic frontier:

$$
f^{\star}(x)= \begin{cases}\bullet & \text { if } \frac{1}{2} x^{\top}\left(\Sigma^{-1}-\Sigma^{-1}\right) x+\left(\Sigma^{-1} \mu-\Sigma^{-1} \mu\right)^{\top} x+\ldots \\ & +\log \left(\frac{\pi}{\pi}\right) \geq 0 \\ \bullet & \text { otherwise }\end{cases}
$$

- Plug-in estimation via Maximum Likelihood: closed-form expressions for $\hat{\mu}, \hat{\mu}, \hat{\Sigma}, \hat{\Sigma}, \hat{\pi}, \hat{\pi}$.

Discriminant analysis

What if $\Sigma=\Sigma$?

- The Bayes classifier draws a hyperplane frontier:

$$
f^{\star}(x)= \begin{cases}\bullet & \text { if }(\mu-\mu)^{\top} \Sigma^{-1} x+\cdots+\log \left(\frac{\pi}{\pi}\right) \geq 0 \\ \bullet & \text { otherwise } .\end{cases}
$$

- $\frac{\pi}{\pi}$ translates the hyperplane frontier.
- If $\pi=\pi$, the Bayes classifier is a minimum-Mahalanobis-distance-to-center classifier.

Pros and cons

- It is computationally tractable (OK in high dimension and with large amount of data).
- It is very restrictive (categorical data...).
- It is not robust.
- It is not very expressive.

Logistic Regression

Logistic Regression

The method

- For binary or multiclass classification only.
- Assumption on data:

$$
\log \left(\frac{\mathbb{P}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}\right)}{\mathbb{P}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}\right)}\right)=w^{\top} X_{\text {new }}+b
$$

for unknown w, b.

- The Bayes classifier draws a hyperplane frontier:

$$
f^{\star}(x)= \begin{cases}\bullet & \text { if } w^{\top} x+b \geq 0 \\ \bullet & \text { if } w^{\top} x+b<0\end{cases}
$$

- Plug-in estimation via Regularized Maximum Likelihood: (\hat{w}, \hat{b}) such that

$$
\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\mathrm{e}^{-Y_{i}\left(\hat{w}^{\top} x_{i}+\hat{b}\right)}\right)+\frac{\lambda}{2}\|\hat{w}\|^{2}
$$

is minimal.

- Parameter: regularization coefficient $\lambda>0$.

Logistic Regression

Pros and cons

- It is robust.
- It is computationally tractable (OK in high dimension and with large amount of data).
- It is not very expressive.

Gradient boosting

Source: https://datascience.eu

Gradient boosting

The method

- For binary classification and regression.
- No assumption on data.
- Combination of simple estimators (weak learners):

$$
\hat{f}(x)=\hat{f}_{1}(x)+\cdots+\hat{f}_{T}(x) \quad \text { such that } \quad \frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{f}\left(X_{i}\right), Y_{i}\right)
$$

is almost minimal.

- Iterative procedure: \hat{f}_{t+1} is such that

$$
\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{f}_{1}\left(X_{i}\right)+\cdots+\hat{f}_{t}\left(X_{i}\right)+\hat{f}_{t+1}\left(X_{i}\right), Y_{i}\right)
$$

is almost minimal.

- Similar to gradient descent:

$$
\hat{f}_{t+1}\left(X_{i}\right) \approx-\frac{\eta}{\text { normalization }} \frac{\partial \ell}{\partial x}\left(\hat{f}_{1}\left(X_{i}\right)+\cdots+\hat{f}_{t}\left(X_{i}\right), Y_{i}\right)
$$

Gradient boosting

The method

- The case of L^{2} regression: $\hat{f}_{t+1}\left(X_{i}\right) \approx Y_{i}-\left(\hat{f}_{1}\left(X_{i}\right)+\cdots+\hat{t}_{t}\left(X_{i}\right)\right)$.
- Parameters: number of simple estimators T, shrinkage coefficient $\eta \in] 0,1]$.

Pros and cons

- It is robust and efficient.
- It is fairly computationally tractable.
- It is very expressive.
- In practice, it has more than two parameters.

Decision tree

Source: https://www.researchgate.net

Decision tree

The method

- For multiclass classification and regression.
- No assumption on data.
- Data dependent partitioning of the input space: $x \in$ Cell $_{1}$ or $\mathrm{Cell}_{2} \ldots$.
- Partition implemented as a binary tree.
- Piece-wise constant estimator: $\hat{f}(x)=$ Value $_{k}$ for $x \in$ Cell $_{k}$.
- Cells and values are determined in order to maximize the output homogeneity.
- Parameters: size of the tree (i.e. number of cells).

Pros and cons

- It is computationally tractable.
- It is very expressive.
- It is prone to overfitting.
- It is used in gradient boosting with few cells.

Random forest

Source: https://www.tibco.com

Random forest

The method

- For multiclass classification and regression.
- No assumption on data.
- Combination of decision trees:

$$
\hat{f}(x)=\frac{\operatorname{tree}_{1}(x)+\cdots+\operatorname{tree}_{T}(x)}{T},
$$

such that trees are roughly independent.

- Trees are learned on bootstrap samples.
- Construction of partitions is perturbed by noise.
- Parameters: number of trees T, size of trees, level of noise in partitions building.

Random forest

Pros and cons

- It is robust and efficient.
- It is fairly computationally tractable.
- It is very expressive.
- Construction is parallelizable.
- In practice, it has many parameters.

To go further

Feature importance and selection

- It is mainly model-dependent.
- In-model importance and post-selection:
- Feature weights for linear models.
- Contribution to the score for decision trees.
- Iterative procedure: score improvement when adding a feature.
- In-model importance and in-selection: sparse regularization for linear models.

Multiclass problems

- Natively handled by some methods: k-Nearest neighbors, trees, random forests, neural networks.
- Others are mainly for binary classification: linear models, boosting, Support Vector Machines.
- Four strategies:
- Binary encoding of the class number $+\left\lceil\log _{2}(\#\right.$ classes $\left.)\right\rceil$ classifiers.
- One versus One + ($\left.\begin{array}{c}\text { \# classes } \\ 2\end{array}\right)$ classifiers.
- One versus Rest + \# classes classifiers.
- Hierarchical One versus Rest + \# classes - 1 classifiers.

Evaluation and selection

Metrics

- It depends on what is important for you but is not necessarilly reflected in the loss ℓ.
- Accuracy, balanced accuracy, top-k accuracy.
- Area under the ROC curve, F1 score.
- Mean squared error, R^{2} score.

Generalization and model selection

- Cross-validation.
- Grid or random search.
- Regularization path.

Source: https://medium.com

Clustering

Clustering

Three methodologies

- We observe only inputs: X_{1}, \ldots, X_{n}.
- Goal Find a partition of the space $\{A, A\}$ such that

$$
\left\{\begin{array}{l}
X_{\text {new }} \in A, X_{\text {other }} \in A \Longleftrightarrow X_{\text {new }} \text { and } X_{\text {other }} \text { are similar; } \\
X_{\text {new }} \in A, X_{\text {other }} \in A \Longleftrightarrow X_{\text {new }} \text { and } X_{\text {other }} \text { are similar. }
\end{array}\right.
$$

The latent variable model

- Partial observation in the classification setting: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, $Y_{1}=\bullet$ or \bullet.
- Expected clustering (\approx Bayes classifier):

$$
A=\left\{x: \mathbb{P}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right) \geq \mathbb{P}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right)\right\}
$$

A is the rest.

- Estimator:

$$
\hat{A}=\left\{x: \hat{\mathbb{P}}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right) \geq \hat{\mathbb{P}}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right)\right\}
$$

Clustering

The latent variable model

- Needs statistics.
- In practice:
- We have to model the data distribution.
- We resort to simple and non-robust estimators.
- We are very limited.
- Examples Soft k-Means.

Clustering

Empirical Risk Minimization

- For a dissimilarity function ℓ, find $\{A, A\}$ such that

$$
\mathbb{E}\left[\ell\left(X_{\text {new }}, X_{\text {other }}\right) \mathbb{1}_{\left.X_{\text {new }} \in A, X_{\text {other }} \in A \text { or } X_{\text {new }} \in A, X_{\text {other }} \in A\right]}\right]
$$

is minimal.

- By the law of large numbers:

$$
\frac{1}{2} \sum_{1 \leq i, j \leq n} \ell\left(X_{i}, X_{j}\right)\left[\frac{\mathbb{1}_{X_{i} \in A, X_{j} \in A}}{\# X_{\ell} \in A}+\frac{\mathbb{1}_{X_{i} \in A, X_{j} \in A}}{\# X_{\ell} \in A}\right] \approx \mathbb{E}\left[\ell\left(X_{\text {new }}, X_{\text {other }}\right) \mathbb{1} \ldots\right]
$$

- Estimator: $\{\hat{A}, \hat{A}\}$ such that $\frac{1}{n} \sum_{i=1}^{n} \ell\left(X_{\text {new }}, X_{\text {other }}\right) \mathbb{1} \ldots$ is minimal.
- Needs optimization tricks.
- In practice:
- We have to change the optimization problem because it is not tractable (NP-hard).
- We have to design a simple and non-optimal iterative procedure because the optimization problem it is not tractable (NP-hard).
- Examples k-means, spectral clustering, hierarchical clustering.

Clustering

Density-based approaches

- Implicitly estimate the density of $X_{\text {new }}$.
- Detect the modes and set automatically the number of groups.
- Needs intuition and geometry.
- In practice:
- We have only an intuitive understanding.
- We have to set a density parameter (neighborhood size, bandwith).
- Examples DBSCAN, OPTICS, Mean shift.

Soft k-means

Soft k-means

The method

- Partial observation in the classification setting: $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
- Assumption on data:

$$
\begin{cases}X_{\text {new }} \mid Y_{\text {new }}=\bullet \sim \mathcal{N}(\mu, \Sigma), & \mathbb{P}\left(Y_{\text {new }}=\bullet\right)=\pi \\ X_{\text {new }} \mid Y_{\text {new }}=\bullet \sim \mathcal{N}(\mu, \Sigma), & \mathbb{P}\left(Y_{\text {new }}=\bullet\right)=\pi\end{cases}
$$

for unknown $\mu, \mu, \Sigma, \Sigma, \pi, \pi$.

- A posteriori distribution:

$$
\mathbb{P}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right)=\frac{\pi \varphi(x)}{\pi \varphi(x)+\pi \varphi(x)}=p(x)
$$

- Plug-in estimation via Maximum Likelihood: $\hat{\pi}, \hat{\pi}, \hat{\varphi}, \hat{\varphi}$ such that

$$
\sum_{i=1}^{n} \log \left(\hat{\pi} \hat{\varphi}\left(X_{i}\right)+\hat{\pi} \hat{\varphi}\left(X_{i}\right)\right)
$$

is maximal.

Soft k-means

The method

- Proxy maximization:

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i=1}^{n} \log \left(\operatorname{density}_{\left(X_{1}, z_{t, i}\right)}\left(X_{i}, Z_{t, i}\right)\right) \mid X_{1}, \ldots, X_{n}\right] \\
= & \sum_{i=1}^{n}\left[\hat{p}_{t}\left(X_{i}\right) \log \left(\hat{\pi}_{t+1} \hat{\varphi}_{t+1}\left(X_{i}\right)\right)+\left(1-\hat{p}_{t}\left(X_{i}\right)\right) \log \left(\hat{\pi}_{t+1} \hat{\varphi}_{t+1}\left(X_{i}\right)\right)\right],
\end{aligned}
$$

where $Z_{t, i} \mid X_{i}=x$ has the distribution of $Y_{\text {new }} \mid X_{\text {new }}=x$ estimated with $\hat{\pi}_{t}, \hat{\pi}_{t}, \hat{\varphi}_{t}, \hat{\varphi}_{t}$.

- Estimator: $\hat{\boldsymbol{A}}=\left\{x: \hat{p}_{t}(x) \geq \frac{1}{2}\right\}$.

Soft k-means

Iterative algorithm

1. Compute $\hat{p}_{t}\left(X_{1}\right), \ldots, \hat{p}_{t}\left(X_{n}\right)$ with $\hat{\pi}_{t}, \hat{\pi}_{t}, \hat{\varphi}_{t}, \hat{\varphi}_{t}$.
2. $\hat{\pi}_{t+1}=\frac{1}{n} \sum_{i=1}^{n} \hat{p}_{t}\left(X_{i}\right)$.
3. $\hat{\mu}_{t+1}=$ empirical mean weighted by $\hat{p}_{t}\left(X_{1}\right), \ldots, \hat{p}_{t}\left(X_{n}\right)$.
4. $\hat{\Sigma}_{t+1}=$ empirical covariance centered at $\hat{\mu}_{t+1}$ and weighted by $\hat{p}_{t}\left(X_{1}\right), \ldots, \hat{p}_{t}\left(X_{n}\right)$.
5. Same for $\hat{\pi}_{t+1}, \hat{\mu}_{t+1}, \hat{\Sigma}_{t+1}$ with $\left(1-\hat{p}_{t}\left(X_{1}\right)\right), \ldots,\left(1-\hat{p}_{t}\left(X_{n}\right)\right)$.

Pros and cons

- It is a very simple and cheap iterative algorithm.
- It is suboptimal (does not necessarily return the MLEs).
- It is very sensitive to initialization $\hat{\mu}_{0}$ and $\hat{\mu}_{0}$ (in practice, it is initialized with k-means++ output).

k-means

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

Source: https://scikit-learn.org

k-means

The method

- No assumption on data.
- ERM with dissimilarity $\ell\left(x, x^{\prime}\right)=\left\|x-x^{\prime}\right\|_{2}^{2}$: minimize

$$
\begin{aligned}
& \frac{1}{2} \sum_{1 \leq i, j \leq n}\left\|X_{i}-X_{j}\right\|_{2}^{2}\left[\frac{\mathbb{1}_{X_{i} \in \hat{A}, X_{j} \in \hat{A}}}{\# X_{\ell} \in \hat{A}}+\frac{\mathbb{1}_{X_{i} \in \hat{A}, \hat{X}_{j} \in \hat{A}}}{\# X_{\ell} \in \hat{A}}\right] \\
= & \sum_{i=1}^{n}\left[\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}+\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}\right],
\end{aligned}
$$

with $\hat{\mu}=\frac{1}{\# X_{e} \in \hat{A}} \sum_{i=1}^{n} X_{i} \mathbb{I}_{X_{i} \in \hat{A}}$.

- Alternating procedure (Lloyd's algorithm):

1. Find $\{\hat{A}, \hat{A}\}$ with $\hat{\mu}$ and $\hat{\mu}$ fixed: Voronoi partitioning.
2. Compute $\hat{\mu}$ and $\hat{\mu}$ with fixed partition $\{\hat{A}, \hat{A}\}$.

- Estimator: $\hat{A}=\{x:\|x-\hat{\mu}\| \leq\|x-\hat{\mu}\|\}$.

k-means

Iterative algorithm

1. $\hat{p}_{t}\left(X_{i}\right)=\mathbb{1}_{\left\|x_{i}-\hat{\mu}_{t}\right\| \leq\left\|x_{i}-\hat{\mu}_{t}\right\|}$.
2. $\hat{\mu}_{t+1}=$ empirical mean weighted by $\hat{p}_{t}\left(X_{1}\right), \ldots, \hat{p}_{t}\left(X_{n}\right)$.
3. Same for $\hat{\mu}_{t+1}$ with $\left(1-\hat{p}_{t}\left(X_{1}\right)\right), \ldots,\left(1-\hat{p}_{t}\left(X_{n}\right)\right)$.

Connection with soft k-means

- Hard assignment: $\hat{p}_{t}(x)=\mathbb{1}_{\ldots}$ instead of $\hat{\mathbb{P}}\left(Y_{\text {new }}=\bullet \mid X_{\text {new }}=x\right)$.
- No a priori in partitioning (or $\hat{\pi}_{t+1}=\frac{1}{2}$).
- No variance (or $\hat{\Sigma}_{t+1} \rightarrow 0$).

Pros and cons

- It is a simple and cheap iterative algorithm.
- It is suboptimal (does not necessarily return the optimal partition).
- It is very sensitive to initialization $\hat{\mu}_{0}$ and $\hat{\mu}_{0}$: k-means++.
- Groups are convex, not hierarchically structured.

Agglomerative clustering

Divisive Hierarchical Clustering

Source: https://quantdare.com

Agglomerative clustering

The method

- No assumption on data.
- Iterative procedure:

1. Start with n groups: a point $=$ a group .
2. Iteratively merge nearest groups.

- Famous distances between groups A and A :
- Single linkage:

$$
d(A, A)=\min _{x \in A, x \in A}\|x-x\|
$$

- Ward's criterion:

$$
d(A, A)=\operatorname{Inertia}(A \cup A)-\operatorname{Inertia}(A)-\operatorname{Inertia}(A)=\frac{\operatorname{Size}(A) \operatorname{Size}(A)}{\operatorname{Size}(A)+\operatorname{Size}(A)}\|\mu-\mu\|^{2}
$$

Connection with k-means

- With Ward's criterion: tend to minimize the total inertia

$$
\sum_{i=1}^{n}\left[\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}+\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}\right]
$$

with a hierarchical procedure.

Agglomerative clustering

Pros and cons

- It is a simple iterative algorithm.
- It is suboptimal (does not necessarily return the optimal partition) but provides a hierarchical structure of groups.
- It is deterministic given X_{1}, \ldots, X_{n}.
- Groups may be non-convex.

DBSCAN

Source: https://www.researchgate.net

DBSCAN

The method

- Density Based Spatial Clustering and Applications with Noise.
- No assumption on data.
- Iterative growing and birth of groups.
- Three types of points:

1. Core points (at least m neighbors with a distance ϵ).
2. Reachable points (non-core points in the ϵ-neighborhood of a core point).
3. Outliers.

- Parameters: number of neighbors m and radius ϵ.
- Movie.

Connection with agglomerative clustering

- With $m=2$, DBSCAN is similar to single linkage with a dendrogram cut at ϵ.

DBSCAN

Pros and cons

- It is a simple iterative algorithm.
- No need to specify the number of groups.
- Groups may be non-convex.
- It is barely sensitive to initialization (for reachable points).
- It cannot detect groups with different densities: OPTICS (Ordering Points To Identify the Clustering Structure).

Evaluation and selection

Metrics

- Global: inertia

$$
I=\sum_{i=1}^{n}\left[\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}+\left\|X_{i}-\hat{\mu}\right\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}}\right]
$$

- Individual and global: silhouette coefficient

$$
S=\frac{1}{n} \sum_{i=1}^{n} \frac{b_{i}-a_{i}}{\max \left(a_{i}, b_{i}\right)}
$$

where $a_{i}=$ average distance of X_{i} to its group and $b_{i}=$ average distance of X_{i} to the nearest group.

- Make sens for convex groups.

Model selection

- The elbow method on inertia.
- Analyzing the silhouette coefficient: example.

Evaluation and selection

Silhouette analysis for KMeans clustering on sample data with n_clusters =2

Silhouette analysis for KMeans clustering on sample data with n_clusters $=\mathbf{3}$

Source: https://scikit-learn.org

Evaluation and selection

Silhouette analysis for KMeans clustering on sample data with \mathbf{n} _clusters $=\mathbf{4}$

Silhouette analysis for KMeans clustering on sample data with $\mathbf{n}_{\mathbf{c}}$ clusters $=\mathbf{5}$

Source: https://scikit-learn.org

What's next?

What's next?

Other learning domains

- Neural networks.
- Dimensionality reduction.
- Data preprocessing.
- Time series.
- Reinforcement learning.
- Data generation.
- Active learning.
- Domain adaptation.
- Image and natural language processing.
- Causality.
- Visualization.
- ...

