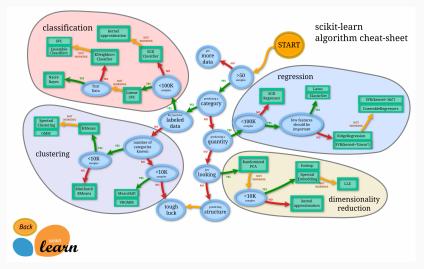
A concise overview of classification and clustering methods

Maxime Sangnier GDR IAMAT - May 31, 2022

Sorbonne Université, CNRS, LPSM, Paris, France

A scikit-learn map



Source: https://scikit-learn.org/

Mathematical setting

Vectors and matrices

- Each experiment is defined by initial conditions $\rightarrow x$ and a result $\rightarrow y$.
- Each observation is defined by an individual $\rightarrow x$ and a feature $\rightarrow y$.
- For computational purposes, $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$.
- Many repetitions of the experiment/observation provide $(x_1, y_1), \ldots, (x_n, y_n)$.

• Data matrix
$$\mathbf{X} = \begin{pmatrix} x_1 \text{ in raw} \\ \vdots \\ x_n \text{ in raw} \end{pmatrix}$$
 (size $n \times d$) and vector of outputs $\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

Numerical formulation

Goal

- 1. **Classification/Regression** Given x_{new} , "predict" *i.e.* approximate y_{new} : $y_{new} \approx f(x_{new})$.
- 2. **Clustering** When y_i 's are *not* observed, gather x_i 's that are *similar*. $\{x_1, x_3, x_4, ...\} \{x_2, x_7, x_{11}, ...\} \{x_5, x_{13}, x_{22}, ...\}.$

Classification and clustering are roughly similar except that no information concerning the group is available for clustering.

Source: https://blog.bismart.com

Mathematical formulation

Randomness

- (x_i, y_i) is a realization of a random pair (X_i, Y_i) .
- Why randomness? Because y_i cannot be computed only based on x_i:
 - y_i is noisy and does not reflect actually our desire.
 - x_i is incomplete and a perfect description is out of reach.

Statistics

- All (X_i, Y_i) 's are independent and have the same distribution.
- We are interested in the expected behavior: overall true now and in the future.
 - 1. Classification/Regression

 $\mathbb{P}(f(X_{new}) \text{ is close to } Y_{new}) = \mathbb{E}[\text{similarity}(f(X_{new}), Y_{new})].$

2. Clustering

 $\mathbb{P}(X_{new} \text{ is similar to } X_{other} \text{ when } X_{new} \text{ and } X_{other} \text{ fall in the same group})$

 $= \mathbb{E} [\text{similarity}(X_{new}, X_{other}) \text{ when } X_{new} \text{ and } X_{other} \text{ fall in the same group}].$

- The distribution of (X_i, Y_i) 's is unknown but...
- By the law of large numbers,

 $\frac{1}{n}\sum_{i=1}^{n}$ similarity $(f(X_i), Y_i) \xrightarrow{a.s.} \mathbb{E}$ [similarity $(f(X_{new}), Y_{new})$].

Supervised learning

Two methodologies

- We observe inputs and outputs: $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- Let ℓ be a loss (*i.e.* a dissimilarity) function.
- **Goal** Find *f* such that $\mathbb{E}[\ell(f(X_{new}), Y_{new})]$ is minimal.

• Classification
$$\ell(f(X_{new}), Y_{new}) = \begin{cases} 1 & \text{if } f(X_{new}) \neq Y_{new} \\ 0 & \text{if } f(X_{new}) = Y_{new} \end{cases}$$

• (L²) Regression
$$\ell(f(X_{new}), Y_{new}) = (Y_{new} - f(X_{new}))^2$$
.

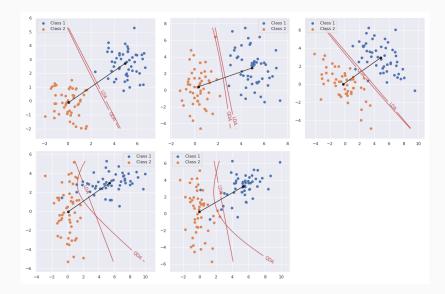
Plug-in estimator

- Bayes minimizer: $f^*(x) = L(\mathbb{E}[Y_{new} \mid X_{new} = x])$, where L is known.
- Estimator: $\hat{f}(x) = L\left(\hat{\mathbb{E}}\left[Y_{new} \mid X_{new} = x\right]\right)$.
- · Needs statistics.
- Often:
 - We have to model the data distribution.
 - · We resort to simple and non-robust estimators.
 - · We are quite limited (the Bayes estimator is not always explicit).
- **Examples** Parametric models (LDA, QDA, Logistic Regression, Linear Regression), kernel methods (*k*-Nearest Neighbors, Trees, Random Forests).

Empirical Risk Minimization

- By the law of large numbers: $\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i) \approx \mathbb{E} \left[\ell(f(X_{new}), Y_{new}) \right]$.
- Estimator: \hat{f} such that $\frac{1}{n} \sum_{i=1}^{n} \ell\left(\hat{f}(X_i), Y_i\right)$ is minimal.
- · Needs optimization tools.
- · Sometimes:
 - · We have to design efficient optimization algorithms (convex optimization).
 - We have to settle for a good algorithm applied in an inadequate setting (non-convex optimization).
- Examples Boosting, Support Vector Machines, Neural Networks.

Discriminant analysis



Discriminant analysis

The method

- · For binary or multiclass classification only.
- · Assumption on data:

$$\begin{cases} X_{new} \mid Y_{new} = \bullet \sim \mathcal{N} \left(\mu, \Sigma \right), & \mathbb{P}(Y_{new} = \bullet) = \pi, \\ X_{new} \mid Y_{new} = \bullet \sim \mathcal{N} \left(\mu, \Sigma \right), & \mathbb{P}(Y_{new} = \bullet) = \pi, \end{cases}$$

for unknown $\mu, \mu, \Sigma, \Sigma, \pi, \pi$.

· The Bayes classifier draws a parabolic frontier:

$$f^{\star}(x) = \begin{cases} \bullet & \text{if } \frac{1}{2}x^{\top} \left(\Sigma^{-1} - \Sigma^{-1} \right) x + \left(\Sigma^{-1} \mu - \Sigma^{-1} \mu \right)^{\top} x + \dots \\ & + \log \left(\frac{\pi}{\pi} \right) \ge 0 \\ \bullet & \text{otherwise.} \end{cases}$$

• Plug-in estimation via Maximum Likelihood: closed-form expressions for $\hat{\mu}, \hat{\mu}, \hat{\Sigma}, \hat{\Sigma}, \hat{\pi}, \hat{\pi}$.

Discriminant analysis

What if $\Sigma = \Sigma$?

· The Bayes classifier draws a hyperplane frontier:

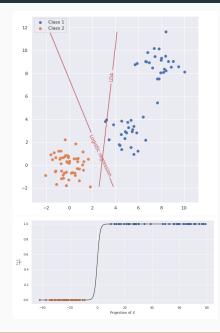
$$f^{\star}(x) = \begin{cases} \bullet & \text{if } (\mu - \mu)^{\top} \Sigma^{-1} x + \dots + \log\left(\frac{\pi}{\pi}\right) \ge 0\\ \bullet & \text{otherwise.} \end{cases}$$

- $\frac{\pi}{\pi}$ translates the hyperplane frontier.
- If π = π, the Bayes classifier is a minimum-Mahalanobis-distance-to-center classifier.

Pros and cons

- It is computationally tractable (OK in high dimension and with large amount of data).
- It is very restrictive (categorical data...).
- It is not robust.
- It is not very expressive.

Logistic Regression



Logistic Regression

The method

- · For binary or multiclass classification only.
- · Assumption on data:

$$\log\left(\frac{\mathbb{P}\left(Y_{\textit{new}} = \bullet \mid X_{\textit{new}}\right)}{\mathbb{P}\left(Y_{\textit{new}} = \bullet \mid X_{\textit{new}}\right)}\right) = w^{\top}X_{\textit{new}} + b,$$

for unknown *w*, *b*.

· The Bayes classifier draws a hyperplane frontier:

$$f^{\star}(x) = \begin{cases} \bullet & \text{if } w^{\top}x + b \ge 0\\ \bullet & \text{if } w^{\top}x + b < 0 \end{cases}$$

• Plug-in estimation via Regularized Maximum Likelihood: (\hat{w}, \hat{b}) such that

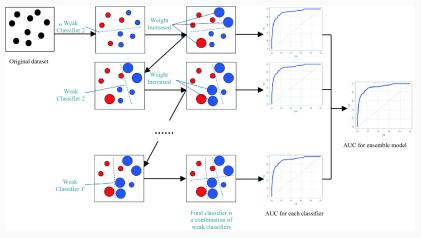
$$\frac{1}{n}\sum_{i=1}^{n}\log\left(1+\mathrm{e}^{-Y_{i}(\hat{w}^{\top}X_{i}+\hat{b})}\right)+\frac{\lambda}{2}\|\hat{w}\|^{2}$$

is minimal.

• Parameter: regularization coefficient $\lambda > 0$.

Pros and cons

- It is robust.
- It is computationally tractable (OK in high dimension and with large amount of data).
- It is not very expressive.



Source: https://datascience.eu

Gradient boosting

The method

- · For binary classification and regression.
- · No assumption on data.
- · Combination of simple estimators (weak learners):

$$\hat{f}(x) = \hat{f}_1(x) + \dots + \hat{f}_T(x)$$
 such that

• Iterative procedure: \hat{f}_{t+1} is such that

$$\frac{1}{n}\sum_{i=1}^{n}\ell\left(\hat{f}_{1}(X_{i})+\cdots+\hat{f}_{t}(X_{i})+\hat{f}_{t+1}(X_{i}),Y_{i}\right)$$

 $\frac{1}{n}\sum_{i=1}^{n}\ell\left(\hat{f}(X_{i}),Y_{i}\right)$

is almost minimal.

· Similar to gradient descent:

$$\hat{f}_{t+1}(X_i) \approx -\frac{\eta}{\text{normalization}} \frac{\partial \ell}{\partial x} (\hat{f}_1(X_i) + \dots + \hat{f}_t(X_i), Y_i).$$

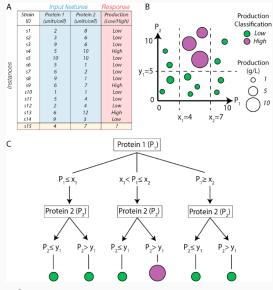
The method

- The case of L^2 regression: $\hat{f}_{t+1}(X_i) \approx Y_i (\hat{f}_1(X_i) + \cdots + \hat{f}_t(X_i))$.
- Parameters: number of simple estimators *T*, shrinkage coefficient $\eta \in]0, 1]$.

Pros and cons

- It is robust and efficient.
- It is fairly computationally tractable.
- · It is very expressive.
- · In practice, it has more than two parameters.

Decision tree



Source: https://www.researchgate.net

Decision tree

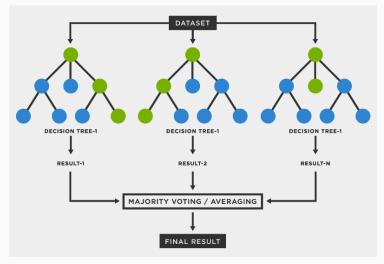
The method

- For multiclass classification and regression.
- · No assumption on data.
- Data dependent partitioning of the input space: $x \in \text{Cell}_1$ or $\text{Cell}_2 \dots$
- · Partition implemented as a binary tree.
- Piece-wise constant estimator: $\hat{f}(x) = \text{Value}_k$ for $x \in \text{Cell}_k$.
- Cells and values are determined in order to maximize the output *homogeneity*.
- Parameters: size of the tree (*i.e.* number of cells).

Pros and cons

- · It is computationally tractable.
- · It is very expressive.
- · It is prone to overfitting.
- · It is used in gradient boosting with few cells.

Random forest



Source: https://www.tibco.com

The method

- For multiclass classification and regression.
- · No assumption on data.
- · Combination of decision trees:

$$\hat{f}(x) = rac{\operatorname{tree}_1(x) + \dots + \operatorname{tree}_T(x)}{T}$$

such that trees are roughly independent.

- Trees are learned on bootstrap samples.
- · Construction of partitions is perturbed by noise.
- Parameters: number of trees *T*, size of trees, level of noise in partitions building.

Pros and cons

- It is robust and efficient.
- It is fairly computationally tractable.
- · It is very expressive.
- Construction is parallelizable.
- · In practice, it has many parameters.

To go further

Feature importance and selection

- It is mainly model-dependent.
- In-model importance and post-selection:
 - · Feature weights for linear models.
 - · Contribution to the score for decision trees.
- Iterative procedure: score improvement when adding a feature.
- In-model importance and in-selection: sparse regularization for linear models.

Multiclass problems

- Natively handled by some methods: *k*-Nearest neighbors, trees, random forests, neural networks.
- Others are mainly for binary classification: linear models, boosting, Support Vector Machines.
- Four strategies:
 - Binary encoding of the class number + [log₂(# classes)] classifiers.
 - One versus One + $\binom{\# \text{ classes}}{2}$ classifiers.
 - One versus Rest + # classes classifiers.
 - Hierarchical One versus Rest + # classes 1 classifiers.

Evaluation and selection

Metrics

- It depends on what is important for you but is not necessarilly reflected in the loss $\ell.$
- Accuracy, balanced accuracy, top-k accuracy.
- Area under the ROC curve, F1 score.
- Mean squared error, R^2 score.

Generalization and model selection

- · Cross-validation.
- Grid or random search.
- · Regularization path.

Clustering

Clustering

Three methodologies

- We observe only inputs: X_1, \ldots, X_n .
- Goal Find a partition of the space {A, A} such that

 $\begin{cases} X_{new} \in A, X_{other} \in A \iff X_{new} \text{ and } X_{other} \text{ are similar}; \\ X_{new} \in A, X_{other} \in A \iff X_{new} \text{ and } X_{other} \text{ are similar}. \end{cases}$

The latent variable model

- Partial observation in the classification setting: (X₁, Y₁),..., (X_n, Y_n),
 Y₁ = or ●.
- Expected clustering (\approx Bayes classifier):

$$\boldsymbol{A} = \left\{ \boldsymbol{x} : \mathbb{P}\left(\boldsymbol{Y}_{\textit{new}} = \bullet \mid \boldsymbol{X}_{\textit{new}} = \boldsymbol{x}\right) \geq \mathbb{P}\left(\boldsymbol{Y}_{\textit{new}} = \bullet \mid \boldsymbol{X}_{\textit{new}} = \boldsymbol{x}\right) \right\},$$

A is the rest.

• Estimator:

$$\hat{A} = \left\{ x : \hat{\mathbb{P}} \left(Y_{new} = \bullet \mid X_{new} = x \right) \ge \hat{\mathbb{P}} \left(Y_{new} = \bullet \mid X_{new} = x \right) \right\}.$$

The latent variable model

- · Needs statistics.
- In practice:
 - We have to model the data distribution.
 - · We resort to simple and non-robust estimators.
 - · We are very limited.
- **Examples** Soft *k*-Means.

Clustering

Empirical Risk Minimization

• For a dissimilarity function ℓ , find $\{A, A\}$ such that

 $\mathbb{E}\left[\ell(X_{new}, X_{other})\mathbb{1}_{X_{new} \in A, X_{other} \in A} \text{ or } X_{new} \in A, X_{other} \in A}\right]$

is minimal.

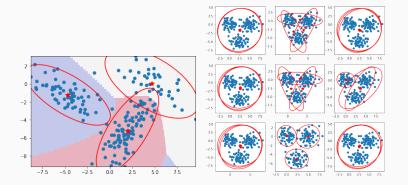
• By the law of large numbers:

$$\frac{1}{2}\sum_{1\leq i,j\leq n}\ell(X_i,X_j)\left[\frac{\mathbbm{1}_{X_i\in A,X_j\in A}}{\#X_\ell\in A}+\frac{\mathbbm{1}_{X_i\in A,X_j\in A}}{\#X_\ell\in A}\right]\approx \mathbb{E}\left[\ell(X_{\textit{new}},X_{\textit{other}})\mathbbm{1}_{\cdots}\right].$$

- Estimator: $\{\hat{A}, \hat{A}\}$ such that $\frac{1}{n} \sum_{i=1}^{n} \ell(X_{new}, X_{other}) \mathbb{1}$... is minimal.
- · Needs optimization tricks.
- In practice:
 - We have to change the optimization problem because it is not tractable (NP-hard).
 - We have to design a simple and non-optimal iterative procedure because the optimization problem it is not tractable (NP-hard).
- **Examples** *k*-means, spectral clustering, hierarchical clustering.

Density-based approaches

- Implicitly estimate the density of X_{new}.
- Detect the modes and set automatically the number of groups.
- · Needs intuition and geometry.
- In practice:
 - · We have only an intuitive understanding.
 - We have to set a *density* parameter (neighborhood size, bandwith).
- Examples DBSCAN, OPTICS, Mean shift.



Soft k-means

The method

- Partial observation in the classification setting: $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- · Assumption on data:

$$\begin{cases} X_{new} \mid Y_{new} = \bullet \sim \mathcal{N}\left(\mu, \Sigma\right), & \mathbb{P}(Y_{new} = \bullet) = \pi, \\ X_{new} \mid Y_{new} = \bullet \sim \mathcal{N}\left(\mu, \Sigma\right), & \mathbb{P}(Y_{new} = \bullet) = \pi, \end{cases}$$

for unknown $\mu, \mu, \Sigma, \Sigma, \pi, \pi$.

• A posteriori distribution:

$$\mathbb{P}(Y_{new} = \bullet | X_{new} = x) = \frac{\pi \varphi(x)}{\pi \varphi(x) + \pi \varphi(x)} = \rho(x).$$

• Plug-in estimation via Maximum Likelihood: $\hat{\pi}, \hat{\pi}, \hat{\varphi}, \hat{\varphi}$ such that

$$\sum_{i=1}^n \log\left(\hat{\pi}\hat{\varphi}(X_i) + \hat{\pi}\hat{\varphi}(X_i)\right)$$

is maximal.

The method

· Proxy maximization:

$$\mathbb{E}\left[\sum_{i=1}^{n} \log\left(\operatorname{density}_{(X_{1}, Z_{t,1})}(X_{i}, Z_{t,i})\right) \mid X_{1}, \dots, X_{n}\right]$$

=
$$\sum_{i=1}^{n} \left[\hat{p}_{t}(X_{i}) \log\left(\hat{\pi}_{t+1}\hat{\varphi}_{t+1}(X_{i})\right) + (1 - \hat{p}_{t}(X_{i})) \log\left(\hat{\pi}_{t+1}\hat{\varphi}_{t+1}(X_{i})\right)\right],$$

where $Z_{t,i} \mid X_i = x$ has the distribution of $Y_{new} \mid X_{new} = x$ estimated with $\hat{\pi}_t, \hat{\pi}_t, \hat{\varphi}_t, \hat{\varphi}_t$.

• Estimator: $\hat{A} = \left\{ x : \hat{p}_t(x) \ge \frac{1}{2} \right\}$.

Soft k-means

Iterative algorithm

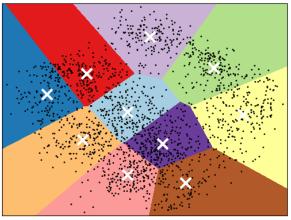
- 1. Compute $\hat{p}_t(X_1), \ldots, \hat{p}_t(X_n)$ with $\hat{\pi}_t, \hat{\pi}_t, \hat{\varphi}_t, \hat{\varphi}_t$.
- 2. $\hat{\pi}_{t+1} = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_t(X_i).$
- 3. $\hat{\mu}_{t+1}$ = empirical mean weighted by $\hat{p}_t(X_1), \ldots, \hat{p}_t(X_n)$.
- 4. $\hat{\Sigma}_{t+1}$ = empirical covariance centered at $\hat{\mu}_{t+1}$ and weighted by $\hat{p}_t(X_1), \dots, \hat{p}_t(X_n)$.
- 5. Same for $\hat{\pi}_{t+1}, \hat{\mu}_{t+1}, \hat{\Sigma}_{t+1}$ with $(1 \hat{p}_t(X_1)), \dots, (1 \hat{p}_t(X_n))$.

Pros and cons

- It is a very simple and cheap iterative algorithm.
- · It is suboptimal (does not necessarily return the MLEs).
- It is very sensitive to initialization μ̂₀ and μ̂₀ (in practice, it is initialized with *k*-means++ output).

k-means

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross



Source: https://scikit-learn.org

k-means

The method

- · No assumption on data.
- ERM with dissimilarity $\ell(x, x') = ||x x'||_2^2$: minimize

$$\begin{split} &\frac{1}{2}\sum_{1\leq i,j\leq n}\|X_i-X_j\|_2^2\left[\frac{\mathbbm{1}_{X_i\in\hat{\mathbf{A}},X_j\in\hat{\mathbf{A}}}}{\#X_\ell\in\hat{\mathbf{A}}}+\frac{\mathbbm{1}_{X_i\in\hat{\mathbf{A}},\hat{X}_j\in\hat{\mathbf{A}}}}{\#X_\ell\in\hat{\mathbf{A}}}\right]\\ &=\sum_{i=1}^n\left[\|X_i-\hat{\boldsymbol{\mu}}\|_2^2\mathbbm{1}_{X_i\in\hat{\mathbf{A}}}+\|X_i-\hat{\boldsymbol{\mu}}\|_2^2\mathbbm{1}_{X_i\in\hat{\mathbf{A}}}\right], \end{split}$$

with $\hat{\mu} = \frac{1}{\#X_{\ell}\in\hat{\mathbf{A}}}\sum_{i=1}^{n}X_{i}\mathbb{1}_{X_{i}\in\hat{\mathbf{A}}}.$

- Alternating procedure (Lloyd's algorithm):
 - 1. Find $\{\hat{A}, \hat{A}\}$ with $\hat{\mu}$ and $\hat{\mu}$ fixed: Voronoi partitioning.
 - 2. Compute $\hat{\mu}$ and $\hat{\mu}$ with fixed partition $\{\hat{A}, \hat{A}\}$.
- Estimator: $\hat{A} = \{x : ||x \hat{\mu}|| \le ||x \hat{\mu}||\}.$

k-means

Iterative algorithm

1.
$$\hat{\rho}_t(X_i) = \mathbb{1}_{\|X_i - \hat{\mu}_t\| \le \|X_i - \hat{\mu}_t\|}$$
.

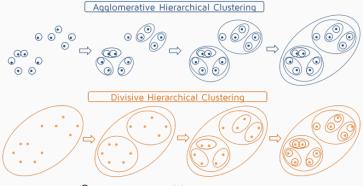
- 2. $\hat{\mu}_{t+1}$ = empirical mean weighted by $\hat{p}_t(X_1), \ldots, \hat{p}_t(X_n)$.
- 3. Same for $\hat{\mu}_{t+1}$ with $(1 \hat{p}_t(X_1)), \dots, (1 \hat{p}_t(X_n))$.

Connection with soft k-means

- Hard assignment: $\hat{p}_t(x) = \mathbb{1}_{\dots}$ instead of $\hat{\mathbb{P}}(Y_{new} = \bullet \mid X_{new} = x)$.
- No a priori in partitioning (or $\hat{\pi}_{t+1} = \frac{1}{2}$).
- No variance (or $\hat{\Sigma}_{t+1} \rightarrow 0$).

Pros and cons

- It is a simple and cheap iterative algorithm.
- It is suboptimal (does not necessarily return the optimal partition).
- It is very sensitive to initialization $\hat{\mu}_0$ and $\hat{\mu}_0$: *k*-means++.
- · Groups are convex, not hierarchically structured.



Source: https://quantdare.com

Agglomerative clustering

The method

- · No assumption on data.
- · Iterative procedure:
 - 1. Start with *n* groups: a point = a group.
 - 2. Iteratively merge *nearest* groups.
- Famous distances between groups A and A:
 - · Single linkage:

$$d(\boldsymbol{A},\boldsymbol{A}) = \min_{\boldsymbol{x}\in\boldsymbol{A},\boldsymbol{x}\in\boldsymbol{A}} \|\boldsymbol{x}-\boldsymbol{x}\|.$$

· Ward's criterion:

$$d(A, \mathbf{A}) = \operatorname{Inertia}(\mathbf{A} \cup \mathbf{A}) - \operatorname{Inertia}(\mathbf{A}) - \operatorname{Inertia}(\mathbf{A}) = \frac{\operatorname{Size}(\mathbf{A})\operatorname{Size}(\mathbf{A})}{\operatorname{Size}(\mathbf{A}) + \operatorname{Size}(\mathbf{A})} ||\mu - \mu|$$

Connection with k-means

· With Ward's criterion: tend to minimize the total inertia

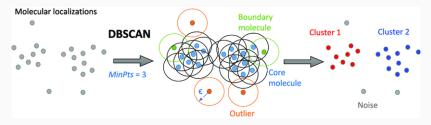
$$\sum_{i=1}^{n} \left[\|X_{i} - \hat{\mu}\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}} + \|X_{i} - \hat{\mu}\|_{2}^{2} \mathbb{1}_{X_{i} \in \hat{A}} \right]$$

with a hierarchical procedure.

2

Pros and cons

- It is a simple iterative algorithm.
- It is suboptimal (does not necessarily return the optimal partition) but provides a hierarchical structure of groups.
- It is deterministic given X_1, \ldots, X_n .
- · Groups may be non-convex.



Source: https://www.researchgate.net

DBSCAN

The method

- Density Based Spatial Clustering and Applications with Noise.
- No assumption on data.
- · Iterative growing and birth of groups.
- · Three types of points:
 - 1. Core points (at least *m* neighbors with a distance ϵ).
 - 2. Reachable points (non-core points in the ϵ -neighborhood of a core point).
 - 3. Outliers.
- Parameters: number of neighbors m and radius ϵ .
- Movie.

Connection with agglomerative clustering

• With m = 2, DBSCAN is similar to single linkage with a dendrogram cut at ϵ .

Pros and cons

- It is a simple iterative algorithm.
- No need to specify the number of groups.
- · Groups may be non-convex.
- It is barely sensitive to initialization (for reachable points).
- It cannot detect groups with different densities: OPTICS (*Ordering Points To Identify the Clustering Structure*).

Evaluation and selection

Metrics

· Global: inertia

$$I = \sum_{i=1}^{n} \left[\|X_i - \hat{\mu}\|_2^2 \mathbb{1}_{X_i \in \hat{\mathbf{A}}} + \|X_i - \hat{\mu}\|_2^2 \mathbb{1}_{X_i \in \hat{\mathbf{A}}} \right].$$

· Individual and global: silhouette coefficient

$$S = rac{1}{n}\sum_{i=1}^n rac{b_i-a_i}{\max(a_i,b_i)},$$

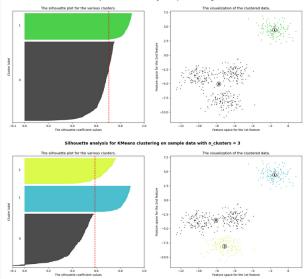
where a_i = average distance of X_i to its group and b_i = average distance of X_i to the nearest group.

• Make sens for convex groups.

Model selection

- · The elbow method on inertia.
- · Analyzing the silhouette coefficient: example.

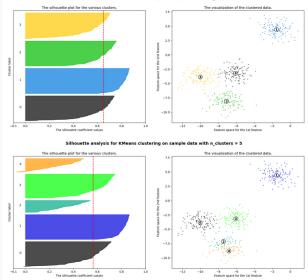
Evaluation and selection



Silhouette analysis for KMeans clustering on sample data with n clusters = 2

Source: https://scikit-learn.org

Evaluation and selection



Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Source: https://scikit-learn.org

What's next?

Other learning domains

- · Neural networks.
- Dimensionality reduction.
- · Data preprocessing.
- Time series.
- Reinforcement learning.
- Data generation.
- · Active learning.
- · Domain adaptation.
- Image and natural language processing.
- Causality.
- Visualization.
- . . .