



### Analysis of high-resolution transmission electron microscopy images by deep learning:

## Example of AgCo nanoalloys

Daniel Förster

GDR IAMAT 31 May 2022

## Convolutional neural networks for HRTEM analysis

#### Image classification, regression, or denoising

requires large number of examples with known categories, values, perfect images

```
3681796691
6757863485
2179712845
4819018894
4819018894
4819018894
7592658197
2658197
222234480
7128769861
```

Proc. of the IEEE 86, 2278 (1998)

#### Nanosystems

realistic large-scale data thanks to simulations

inverse problems: structure determination from experimental characterization techniques

machine learning can add value: reduction of search space when informed by physical models

Advantages: fast, enables thus statistical analysis

**Disadvantages:** limited scope of applicability, requires validation

# Why nanoalloys, why HRTEM?

#### Nanoalloys

- catalysis
- plasmonics
- magnetic particles for biomedical applications

#### Advantages

- new properties due to alloy effect
- reduced cost
- encapsulation of toxic elements



PdPt nanoalloy Faraday Discuss., **181**, 19 (2015)

#### HRTEM

- analysis of individual objects
- atomic resolution

#### **Difficulties**

- image noise, long exposure may affect objects
- aberrations, defocus, Z-insensitivity

## Dataset generation: Molecular dynamics

#### Interatomic model

Tight-binding second moment approximation for Ag-Co J. Comput. Theor. Nanosci. **6**, 841 (2009)

Random system size (up to 1000 atoms), and composition

#### Rapid quench

- Core-shell: gas mixture 7500 K to 300 K
- Janus: droplets 800 K to 300 K

Thermalization at 300K

200.000 simulations, side effect: enables statistical analysis





## Dataset generation: HRTEM images

#### **Multi-slice technique**

several software packages available, here Dr. Probe Ultramicroscopy **193**, 1 (2018)

200 keV electrons, 20 slices resolution: ~23 px/nm

#### Variability

- random defocus and aberration coefficients
- random position and orientation
- addition of shot noise

5 images per configuration  $\rightarrow$  2M images

→ realism and diversity are key

#### Pairs of clean and noisy images





Core-shell





Janus

# Classification in terms of chemical ordering

#### Network architecture



#### Output value

- **class:** core-shell or Janus
- **size:** number of atoms
- composition:  $N_{Ag}/N_{tot}$

#### Influence of dataset size



## Evaluation of classification accuracy



7

## Estimation of particle size and composition

#### Number of atoms



#### Average error: ±33 atoms

#### **Particle composition**





## Image denoising

#### Autoencoder network



noisy
ground truth
prediction

Image: Second seco

→ almost perfect noise suppression perspective: super-resolution

## Conclusion and perspectives

#### Results

- Classification in terms of chemical ordering: 81%
- Size estimation of particles:  $\pm$  33 atoms
- Almost perfect noise suppression

#### Outlook

- Application to images from experiments
- Other types of analysis, e.g. estimation of microscopy parameters
- Other experimental characterization techniques, such as HAADF STEM, X-ray diffraction, Raman spectroscopy



#### Many thanks to our collaboration









Hiba Idrissi Caroline and Pascal Andreazza ICMN CNRS/Université d'Orléans

Riccardo Ferrando University of Genoa

## Thank you for your attention

Daniel Förster

GDR IAMAT 31 May 2022

## Convolutional neural networks

### Convolutional layer



## Convolutional neural networks

Max. pooling layer



## Convolutional neural networks

# For training: compare output to labeled chirality minimize cost function via gradient descent (10<sup>6</sup> params) X