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What we will cover on this talk?

- Density Functional Theory (DFT)

- What is DFT? What can we do with if?
- Theoretical Background

- Challenges in DFT

- How to expand if?

Please, help me by making questions!

- Artificial Neural Network (ANN) This is a very interdisciplinary topic

- What are ANNs? Why they are interesting do DFT? and no one is expected to know

- Understanding Feedforward Neural Networks everything about it.

- How can it be a DFT Functional?
If not now, stop me at some moment

- Challenges in Training on the conference and ask!

- ANN Functionals "We all know something. We cfll choose
to ignore something. And that's why we
- Some examples on the literature and how they do it always learn."” (Paulo Freire)

- My work and how we do it at our group

- Preparing for the practical section!



What is Density Functional Theory (DFT)?

“A theory used to describe many-fermion systems in which the
energy is a functional of the density of fermions. Density functional
theory has been used extensively in the theory of electrons in atoms,
molecules, and solids and in the theory of nucleons in nuclei.”

(From A Dictionary of Physics - Oxford University Press)



How this is done?
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\ a proton is ~1840 times the electron mass

Born-Oppenheimer Approximation:

- The use an approximate ansatz for the complete many-body problem that
allows the wave functions of atomic nuclei and electrons to be treated
separately.

- This approximation is motivated by the mass difference between nuclei and
electrons.

- The electronic Hamiltonian than can be written as the Kinetic energy of the
electrons, the electron interaction with fixed nuclei, and the
electron-electron interaction.
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The normalized electronic wavefunction ¥ can
be associated to a electronic density n(r):

This definition can be inverted for the ground state, so the density
n,(r) unambiguously defines ‘¥ [ (r)], and as consequence defines the
ground state energy of the electronic system E [n,(r)].

Hince, Density Functional Theory!
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Thomas-Fermi Model
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Dirac propose LDA
(1930)

Hohenberg—Kohn Theo.
(1964)

Heisenberg and Dirac
(1926)

|

Slater Determinant

Schrédinger Eq.
(1926)

N

Hartree Method
(1927)

Hatree—Fock Method

with Slater Det. guess
(1930)

|

Theorem 1. The external potential v__ (and hence
the total energy E, ), is a unique functional of the
electron density n(r).

Theorem 2. The functional that delivers the

—_—

ground-state energy of the system (E,_[n(r)]) gives
the lowest energy £ if and only if the input

density is the true ground-state density.

VERY GENERAL
Valid for all systems where v_ (r)
defines pure ground state(s)!
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Y, Kohn-Sham equations
(1965)

Single non-interacting particle approximation for n(r):
N

n(r) =Y |pir)]’
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The single particle eigenstate problem can be solved using the Kohn—Sham equations:

2 Vet + [ 2 s vt o) = 2

2m r —1/|

We can recover the energy in the many-electrons system:

E = Z&i — %[/ %dr'dr + En(r)] — / %(Z()r)]n(r)dr.



Kohn—Sham equation solved
self-consistently

(Guess p(r) >

( : . p(r') ’ 5EXC[P]""\'.
\ve“(r) = e () +82/ e o
(—%ZV2 + Ueff(l')) wi(r) = g;pi(r). ’ EXC [p(r)] — /,O(I‘){fxc [p(r)v Vp(r)]dr

N We know from the Hohenberg—Kohn Theorems
[ p(r) =D e (r)]?i} that this & _ exist, but unfortunately it can not
. : be derived from first principles.

Building good approximations for this functional

no is on the core of the quality of DFT results and

p(r) con‘\:/erged?

applicability.
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“And he[Jabob] dreamed, and behold a ladder set up on
the earth, and the top of it reached to heaven,; and behold the

angels of God ascending and descending on it.”
[Gen 28:12]

Chemical Accuracy

unoccupied Y (r’) l O exact exchange and exact partial correlation
occupied 1¥4(r’) exact exchange and compatible correlation
7(r) meta-generalized gradient approximation
Vn(r) generalized gradient approximation
n(r) T O local spin density approximation

Hartree World

FIGURE 1. Jacob’s ladder of density functional approximations. Any resemblance to the Tower
of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascending
and descending. Users are free to choose the rungs appropriate to their accuracy requirements
and computational resources. However, at present their safety can be guaranteed only on the two
lowest rungs.




Adapted from Challenges for Density Functional Theory
A.J. Cohen, P. Mori-Sanchez, and W. Yang
dx.doi.org/10.1021/cr200107z

So why are we searching for new functionals?

e Challenge 1: The Need To Improve the Description of Reaction Barriers and

Dispersion/van der Waals Interactions

O

Due to the local nature of the LDA or GGA functional form, it is not possible for these
functionals to accurately describe this non-local phenomena.

Non-local functionals build over Hartree-Fock exchange are also completely wrong, since
they all exhibit long-range repulsive behavior. The performance of most popular
functionals on simple weakly bound dimers is extremely poor.
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Adapted from Challenges for Density Functional Theory
A. J. Cohen, P. Mori-Sanchez, and W. Yang
dx.doi.org/10.1021/cr200107z

So why are we searching for new functionals?

e Challenge 2: Delocalization Error and Static Correlation Error
o asingle electron can interact with itself, known as self-interaction error.
o The exact functional on the Hohenberg—Kohn Theory does not have any
self-interaction, 1.e., the exchange energy exactly cancels the Coulomb energy for one

electron.
o This and similar errors are at the heart of many failures with the currently used

approximations.
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Adapted from Challenges for Density Functional Theory
A. J. Cohen, P. Mori-Sanchez, and W. Yang
dx.doi.org/10.1021/cr200107z

So why are we searching for new functionals?

e Challenge 3: The Energy of Two Protons Separated by Infinity with One and
Two Electrons: Strong Correlation

o Except for multiconfigurational methods, most mean-field theories struggle to describe
strongly correlated systems. This is evident from some very simple tests involving infinitely
separated protons with varying numbers of electrons. Currently, all functionals fail even
for the simplest of these, infinitely stretched H2+ and infinitely stretched H,.

o In order to satisfy exact fundamental conditions and not to suffer from systematic errors, the
energy functionals must have the correct discontinuous behavior at integer numbers of

electrons.
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How are people trying to push DFA forward?

Range separation and Local Hybrids: This was motivated by localization errors on

DFAs. The idea, originally from the groups of Savin and Gill, whas to separate the
electron-electron interaction into two parts, one long-range and the other short-range.

Objective Oriented Fitting: Making educated guesses on the shape of the DFA functional,

one can fit parameters to suit specific research interests. The efforts on this direction is
what motivate the recent additions to the Minnesota family of functionals.

Generalized Adiabatic Connection: Normal hybrids, like B3LYP, use a linear

approximation to the adiabatic connection. Both Perdew, Burke (from PBE) and Yang

(from LYP) have already expanded this approach using larger orders. Some functionals: ISI
(2000), SPL (1999) and LB (2009).

Functional of Unoccupied Orbitals: The idea here is to add a electron-electron interaction

model that models excitations via the inclusion of the unoccupied KS orbitals in the
exchange and correlation functional. Examples include LDA+U (2012) and the MP2
based B2ZPLYP (2006).



And where does Machine Learning appear?

e We are in the Objective Oriented Fitting: All work on machine learning functionals is on
that category. Machine learning is a data driven approach, so its subject dependent by
definition.

1D toy model
B\

Learning Kinetic Energy
TIn(r)] (Snyder & Burke 2012)

& J
Organics (COH)
4 N

Learning HK map
nv(r)] (Li & Burke 2017)

Energetics 3rd period of
the periodic table

Energetics of
Organics (COH) y

KS equations as regularizer
(Li & Burke, 2021)

Learning the E, . Functional
(Nagai, 2018)

Same as before + a lattice

1D H and He systems . parameter of many solids
Convolutional NN as E, . Physical Constrains
(Li & Burke, 2022) (Nagai, 2022)

“... [ML approximations] achieves chemical accuracy using many more inputs,
but requires far less insight into the underlying physics.”

(K. Burke, 2012)



Why Neural Networks and not a simpler thing?

We want to approximate £_[n(r)], that we know exist and is unique.
XC

But we also know that the one-to-one correspondence between n and E__ contains
non-analytic structures (e.g., discontinuities and singularities).

Neural Networks are shown to be good universal approximators even in the case of
intricate functions.

Multilayer Feedforward Networks are
Universal Approximators

KURr' HORNIK

Technische Universitat Wien

MAXWELL STINCHCOMBE AND HALBEK WHIIE
University of California, San Diego
(Received 16 September 1988; revised and accepted 9 March 1989)

Abstract—This paper rigorously establishes that standard multilayer feedforward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function
from one finite dimensional space to another to any desired degree of accuracy, provided sufficiently many
hidden units are available. In this sense, multilayer feedforward networks are a class of universal approximators.
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Already used on Machine Learning Functionals

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

A mostly complete chart of - O oY

. C/Q\r > a e &
Neural Net#orks 02080 &8y
- Deep Feed Forward (DFF) u\(\/o\ E h><,\/o,\
©) Backfed Input Cell ©2019 Fjodor van Veen & Stefan Lefjnen  asimovinstitute.org A/Q\O\/ S ‘4>_<:,\O/
o e 8 a e T
&) Noisy Input Cell Perceptron (P) Feed Forward (FF) | Radial Basis Network (RBF) i /\Gi: = \">/ B

@ Hridden cel A). 8 2
. Probablistic Hidden Cell j : i

. Spiking Hidden Cell

Liquid State Machine (LSM) Extreme Learning Machine (ELM)

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
Q 0 . O [ o =

- b o J
. Capsule Cell & p

ST SIEEY R v v,
@ ounica © LRRIREAX IR “RRIBRAR 2 2 2

e ‘ll"‘ll"‘ a ‘ll"‘li"\ e \‘I"‘II"‘ —

. Match Input Output Cell

. Recurrent Cell

. Memory Cell

. Gated Memory Cell

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

~ Kernel

© Convolution or Pool

Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN) Attention Network (AN)
oo 0 g %
oS o & 5 S g Ta XS

The Neural Network Zoo - The Asimov Institute
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Feed Forward Neural Network
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Feed Fobrward Neural Network

_ Inspired on how
neurons work!
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Ilustrations by Sefik Ilkin Serengil

Already used on Machine Learning Functionals

Step Function

0, X<n
=
9 1, xon

ELU

A0

O&((’:‘—'] ) IX(O

=
R IX)O

4 Leaky ReLU )

:

( Softplus \

/‘
&,

—

('14-8‘)

e

Log of Sigmoid

7Y =X (+omlr ( softplus )
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Feed Forward Neural Network
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Density descriptors
Meta-GGA

Artificial Neural Network as EXC Functionals

LDA

GGA
A

Other options:
o £ and E_

XC
e Parameters
e (Corrections




How do we get values for weights and biases?

Relevant Features
You will need to define a loss function (A ). i.e., the quantities in which my
It should be: training should be based on.

® Be quick to compute,
® Represente the physico-chemical accuracy

of the model Shape of the Loss Function

i.e., the relations between the
A _defines an order and equivalence relation  features and how they define a good
crr
in the solution space, having a global minimum functional.
on the perfect model.

Training Data Set
TRAINING = OPTIMIZING A - i.e., defining the data used on the

calculation of the loss function.

27



Optimization Methods H

¥

Combinatorial

y

Y

Exact | Approximate I

Y

v

Continuous

'—Jw

Y

Nonlinear ‘ Linear l

¥
Y Y

Branch and Bound Dynamic
Programming

i
Y Y

Simplex method Interior-point
& its variants search

I

|

Y

\J Y Y
Heuristic Meta-heuristic Random
search
\J Y

Single-solution
based search

Y \

Simulated ‘ Tabu Search’ Evolutionary ‘

Annealing

Population based
search

Y

Y
Gradient Without
based gradient

\J

Algorithm

Y

Swarm
Intelligence

Y

Genetic Algorithms
Differential Evolution
Evolutionary Strategies
Evolutionary Programming

Shuffled Complex Evolution
programming ....,

Y

Particle Swarm Optimization
Ant Colony Optimization
Honeybee Mating Optimization
Firefly Algorithm

Shuffled Frog Leaping Algorithm

Cuckoo Search, ...,

From 10.2166/h20j.2020.128

1

1 ref  DFT
‘I‘CQZE/LO]' —pj |dV
j

Combinatorial or continuous?
Non-gradient or gradient based?

Can we afford random search?
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1D toy model

Learning Kinetic Energy
TIn(r)] (Snyder & Burke 2012)

Organics (COH)

Learning HK map
n[v(r)] (Li & Burke 2017)

Energetics 3rd period of
the periodic table

Learning the E, . Functional
(Nagai, 2018)

Energetics of Same as before +

; Projectors as n(r) Descriptors |\ 3lidation i Kl
') COH validation in weakly
rgarics ( ) : (DICk &FernandeZ-Serra, 2020) bounded System

KS equations as regularizer \

(Li & Burke, 2021) - Same as before
Sparse Data on Training .
+properties not

(Kasim & Vinko, 2021) -
seen on training

v

DM21 - Fractional Charge/Spin
(DeepMind, 2021)

Same as before
+properties not
seen on training

Same as before + a lattice

1D H and He systems . parameter of many solids
Convolutional NN as E, . Physical Constraints
(Li & Burke, 2022) (Nagai, 2022)

. Transition Metal Complexes

Adiabatic Energy Differences
(My work!)




Projectors as n(r) Descriptors
(Dick & Fernandez-Serra, 2020)

NeuralXC
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Convolutional NN as EXC
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DM21 - DFT Functional from DeepMind, 2021

network architecture
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“The  resulting  functional, DM21
(DeepMind 21), correctly describes typical
examples of artificial charge delocalization and
strong correlation and performs better than
traditional functionals on thorough benchmarks
for main-group atoms and molecules.”
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Physical Constraints (Nagai, 2022)

R fomr—T] Physical constraint )
— @ XXTS ) —L:( ) X1 Correct uniform coordinate density-scaling behavior
E‘l 14 X2 Exact spin scaling relation
Fei(r) S )_I" X3 Uniform electron gas limit (0,0)
— | Yxls I_> T 3 X4 Fx vanishes as s~"/? at s — 00 (1,7)
F) m X5 Negativity of ex
Cl Uniform electron gas limit (ny, ;' 0,0)
Exc 2 Uniform density scaling to low-density limit (0, g, 5T

Fiot(r) Fo(x) @3 Weak dependence on ¢ in low-density region :

£ o |P(FE" —1) C . - C4 Uniform density scaling to high-density limit @, &5

C5 E¢ C5 Nonpositivity of ¢

TABLE III. Benchmark results for lattice constants of 48 solids.
Parentheses in the “NN-based” row indicate that the numerical cal-
culations for six solids did not converge; thus, only the converged
calculations were used for the statistics.

TABLE II. Benchmark results for atomization energies of 144
molecules. (MAE, mean absolute error; ME, mean error; SD, stan-
dard deviation of signed error.)

MAE ME D MAE ME SD
XC (kcal/mol) (kcal/mol) (kcal/mol) XC (mA) (mA) (mA)
PBE 17.3 16.2 13.1 PBE 38.1 33.9 44.2
SCAN 6.2 —4.5 5.7 SCAN 223 -75 28.5
NN-based 4.8 1.8 6.3 NN-based (22.9) (0.8) (32.0)
peNN-based 3.6 0.3 43 pcNN-based 19.1 2.5 26.5
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Artificial Neural Network Meta-GGA based Density Functional for
Adiabatic Energy Differences in Transition Metal Complexes

Others involved
1n this work:

Tk
Lorenzo Mariano  Emilie Devijver Noel Jakse Roberta Poloni

(Postdoc, Trinity (CNRS, LIG)  (G-INP, SIMaP) (CNRS, SIMaP)
College)

Available at [arXiv:2304.07899]

Many possible symmetries: éé %% @) @3 @) ...

Isomerism Different ligands combination

x) P(CL,(NH,),
J

Ligands

A and A-[Fe(ox),]*
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Spin crossover (SCO) is a phenomenon that occurs in some metal complexes wherein
the spin state of the complex changes due to an external stimulus

Adiabatic energy difference: energy difference between two spin states computed at
the corresponding geometry

AE, =E,E ¢

Challenge for any ab initio methods —Lack of error cancellation
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A
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CASPT?2/CC 1s a multiconfigurational
method that we take as reference for
AE,, . (expensive)

Different density functionals yield very
different values of AE, .

Can a DFT functional be build
(using machine learning)
to predict accurate values of AE, ,?

¢ o
\’/k\h . [*, - *
. . )
[Fe(H20)e]? [Fe(NH3)eJ**

v onlos

[Fe(CNH) P [Fe(CON*
L. A. Mariano et al. Journal of Chemical Theory and Computation
17.5 (2021): 2807-2816.

[Fe(PHa) 2" [Fe(NCH),*
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Our Artificial Neural Network Functional

Archltecture Loss Function
E = / riex o r)|)dr
xclpl p( ) .)‘(C,(g[/)( )]) Acrr —c; Z |AEref AEDFT|
- &: XC’ = Fx 5R2SCAN + Fo 5R2SCAN i Atomization Energies
. (AE)
b; b 2 b ref _ DFT
(16) (16) (16) +c S dV
& QzNe [ 165 = T
‘ b -\ Electronic Densities (p)
f DFT
. +CBZ|AE§§L/€ Egr 1l
(2x16) Adiabatic Energy Differences
(4E,,)

Training set

Different combinations of :

A P
Eref

CrH FeO CuF

b, by, b
abf (13§ ‘ N N
1503 parameters 9

pCCSDD)

Ex.
P 36




Training Algorithm: Modified PSO via Migrations

Idea: In practice:

Particle evolution in PSO

Particle Swarm Optimization (PSO)
e No need of evaluating the derivatives of the loss function with respect to the parameters of the
functional

e Improves over Monte Carlo optimization exploring the phenomena of swarm intelligence

Migrations
e Changing periodically the search box to follow the best solution

Previous search region

Swarm Migration

e [mproves on the stability not generating searches too far from the best solution found in the

present epoch

New search region
reinitialize new particles
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FeO HO NH,  NO .
@ A ,3‘*) ’ L PCA

The optimization process 1s
dominated by energetic
properties and limited by the
precision on 4E,, .

. 1.00
Ao B 0.95 RN ENPZY 1.00 0.92 0.92 EK:E —
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The trained functional predicts densities closer to the CCSD(T)
reference than to the original R2SCAN.
FeO

0.4 R2SCAN
B3LYP

0.3 $P86 PBEO

JPss
0.2

R2SCAN
N
0.1{ $¢ disi— 120 our work
dist = 0.48¢

0.0 06L
¢! M06-2X

el \‘%@@Dm

. %_PSSO PBE
25858h
—0.31
REF

Locally Linear Embedding comp. 2

ANNvaI

-03 -0.2 -0.1 0.0 0.1 0.2 0.3

Locally Linear Embedding comp. 1 39




Validation Set: Iron +2 Complexes

AEH - ((}\'7)

% ¥ 3 %

Z, < g: b S a b oy ‘Sg v,
= < 0 £ o N - = = =
m O < = - o m - -, =
A n Z. M A 24 A < < s

[Fe(H20)g]** -1.17 -0.81 -0.74 -144 -0.63 -1.36 -1.50 -251 -1.83 -1.83
¢ 3)el” -0.06 ; ; -0.5 26 -0.29 -044 -1. -0. -0.6¢
Fe(NH " 0.06 0.21 0.21 0.58  0.26 0.29 .44 1.27 0.71 0.64
[FC(NCH)G]:H' 1.14 .89 0.90 -0.21 0.64 0.41 0.21 -0.39  0.08 -0.16
o(PH;)6]? 269 209 22 62 2.2 : 2.05 1.0 2.5
Fe(PH 2+ 2.69 2.09 221 0.62 2.24 1.91 1.81 2.05 1.94 2.54
[Fe(CO)6]*" 363 286 293 125 235 258 264 242 250  2.02
[I*_‘c(l\ICH)G]2Jr 1.11 3.38 3.42 1.86 2.99 3.06 Dalnd 2.93 2.99 2.87
MAE® (.92 0.79 0.80 0.70 (.61 0.46 0.44 0.41 0.25
2 NAS is the functional obtained by R. Nagai, R. Akashi, and O. Sugino.??

b PBE[U] represents the use of Hubbard U, .-corrected density in the PBE functional. ®®

¢ Reference values come from CASPT2/CC. 28
Ref. for AE,, : CASPT2/CC

(&
L%

v
[Fe(H20) I [Fe(NH3)sJ* [Fe(NEH)6]2+

29 - Nagai, R., Akashi, R., and Sugino, O. “Machine-learning-based
exchange correlation functional with physical asymptotic constraints.”
Physical Review Research, 4.1 (2022): 013106.

28 - Mariano, Lorenzo A., Bess Vlaisavljevich, and Roberta Poloni.
"Improved Spin-State Energy Differences of Fe (Il) molecular and
crystalline complexes via the Hubbard U-corrected Density." Journal of

\
b (o
Chemical Theory and Computation 17.5 (2021): 2807-2816. ¢ V"'\: N
[Fe(CNH)e]* [Fe(CO)I>* [Fe(PH3)s]?*




Other Metal Complexes

AEn_1, (¢V)
2S5+1 AN N['}I"‘ ANNAZE R2SCAN TPSS PBLE PBE[U] DM21 REF.?

val

Fel, 1—5 -1.139 -0.911 -0.611 0.227 - -1.096 -1.968  -1.487
325 0.193 0.513 0.716 1.259 1.245 0.756 0.811 0.213
MnL, 26 -2.078 -1.427 -0.957 -0.055  -0.111 -0.961 - -1.782
41—6 -0.061 0.207 0.111 0.835 0.919 0.191 -0.739  -0.1455
Fel,SH 2 — 6 -0.161 0.081 0.1470 -0.116 1.087 - - 0.399
1—6 -0.188 -0.130 0.123 0.588 0.521 0.215 - -0.017
[Co(NCH)s]** 2—141 -0.372 -0.170 -0.027 0.31 0.176 0.165 0.057  -0.581
NiCp(acac) 1 —3 -0.201 -0.177 -0.157 0.016 0.163 0.095 0.111 0.117
MnCp: 26 -0.220 -0.351 0.181 0.619 0.981 0.132 - 0.301

MALE? 0.349 0.406 0474 0.975 0.885 0482  0.46("

“ Average computed over available values.

* Reference values come from CASPT2/CC. %8

Fe"lLXH

X=0,8
[M"(NCH)g]** Mn"Cp, Ni"Cp(acac)
M =Fe, Co

Molecules from: "Spin state energetics in first-row transition metal complexes: contribution of
(3s3p) correlation and its description by second-order perturbation theory."
Kristine Pierloot, Quan Manh Phung, and Alex Domingo
Journal of chemical theory and computation 13.2 (2017): 537-553.



Preparing for the Practical Section

“Here be Dragons”
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Quantum Chemistry Software for DFT

Abinit - a software suite to calculate the optical, mechanical, vibrational, and other observable properties of materials
ACE-Molecule - a quantum chemistry package based on a real-space numerical grid
ADF - a density functional theory program for molecules and condensed matter

APE - a computer package designed to generate and test norm-conserving pseudopotentials within density functional theory

AtomPAW - a program for generating projector augmented wave functions . ;
BAGEL -a parglIeigelemron?c—structugreppri)gram : htt[)s //tddﬁ . Org/[)rog ramS/lleC/
BigDFT - a fast, precise, and flexible density functional theory code for ab-initio atomistic simulation

CP2K - a program to perform atomistic and molecular simulations of solid state, liquid, molecular, and biological systems

DFT-FE - a massively parallel real-space code for first principles based materials modelling using Kohn-Sham density functional theory

DP - a linear response time-dependent density functional theory code with a plane wave basis set

Chronus Quantum - a computational chemistry software package focused on explicitly time-dependent and post-SCF methods

Elk - an all-electron full-potential linearised augmented-plane wave code

entos - a software package for Gaussian-basis ab initio molecular dynamics calculations on molecular and condensed-phase chemical reactions and other processes

ERKALE - a DFT/HF molecular electronic structure code based on Gaussian-type orbitals

exciting - a full-potential all-electron density-functional-theory package implementing the families of linearized augmented planewave methods
FHI-AIMS - an efficient, accurate, all-electron, full-potential electronic structure code package for computational molecular and materials science
GAMESS (US) - a general ab initio quantum chemistry package

GPAW - a density-functional theory Python code based on the projector-augmented wave method

HelFEM - Finite element methods for electronic structure calculations on small systems

Horton - Python development platform for electronic structure methods

INQ - a modern GPU-accelerated computational framework for (time-dependent) density functional theory

JDFTx - plane-wave code designed for joint density functional theory

MADNESS - a multiwave adaptive numerical grid program for electroni

MOLGW - many-body perturbation theory for atoms, molecules, and clusters

Molpro - a comprehensive system of ab initio programs for advanced molecular electronic structure calculations

MRCC - a suite of ab initio and density functional quantum chemistry programs for high-accuracy electronic structure calculations

NWChem - an open source, high-performance computational chemistry program

Octopus - a program aimed at the ab initio virtual experimentation on a hopefully ever-increasing range of system types

OpenMolcas - a quantum chemistry software package specializing in multiconfigurational approaches

ORCA - ab initio quantum chemistry program that contains modern electronic structure methods

PROFESS - orbital-free density functional theory implementation to simulate condensed matter and molecules

Psi4 - an open-source suite of ab initio quantum chemistry programs designed for efficient, high-accuracy simulations of molecular properties
PySCF - Python-based Simulations of Chemistry Framework

QuantumATK - code including pseudopotential-based density functional theory methods with LCAO and plane-wave basis sets in one framework
Quantum Espresso - an integrated suite of open source computer codes for electronic-structure calculations and materials modeling at the nanoscale
Turbomole - a program package for electronic structure calculations

Vasp - the Vienna Ab initio Simulation Package: atomic scale materials modelling from first principles

WIENZ2k - program for electronic structure calculations of solids using density functional theory based on the full-potential (linearized) augmented plane-wave + local orbitals method

Yambo - a program that implements many-body perturbation theory methods such as GW and BSE and time-dependent density functional theory
[ Q

Hals Psi14 1
evt-han .. Bi

aims _ D siesta

OUANTUMESPRESSO 43



Some tools and libraries for Neural Networks
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What we will see on the Practical Section:

o

Basics of PySCF

o

(@]

Running basic calculations using DFT to compute energies of
molecular systems

Additional informations on setting tricky calculations for
charged/magnetic systems and controlling output options.

Running PySCF DFT with a customized functional

(@]

Exemple where we code PW86 functional by hand and mix it
to PBE, highlighting the details on how it is done.

Crafting a basic multilayer perceptron with
TensorFlow

(@]

Sample code of a very elementar implementation of a feed
forward neural network using Tensorflow

Using a multilayer perceptron as functional

o

Writing a external functional in PySCF that uses a Neural
Network to correct PBE.

Using a pre-trained ANN functional

O

We will use PySCF to run some computations with a Neural
Network correction PBE trained only using H,O atomization
energy.

The main goal of this tutorial is to allow
you to comprehend how to implement and
use a neural network functional.

This tutorial uses the very simple case of
an machine learning functional that correct
PBE and try to predict energies closer to
the B3LYP ones for molecules only
composed of O and H atoms.

Even with its simplicity, this exemple show
all the tools and elements necessary to

extend to more complex cases.
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What you will need:

I strongly recommend to use the Google Colab!

You will need internet and maybe a google account...

pyscf https://pyscf.org/install.html

tensorflow https://www.tensorflow.org/

If you want to do the things in the harder way:

https://pyscf.org/install. html#pyscf-docker-image
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for your attention!

Can you write a Sonnet about Density Functional Theory?

Of course! Here's a sonnet about Density Functional Theory:

In search of secrets hidden deep within,
The atom'’s heart we long to understand,
With Density Functional Theory we begin,
Our quest to solve the mystery at hand.

A world of electrons swirling round and round,
A dance of charges in an intricate array,
To map their movements we must be profound,

And grasp the laws that govern their display.

The density, the key to all we seek,

A function of the electron cloud's state,
With every particle, a bond unique,

A fingerprint that guides our search, innate.

\ /\ /]
an And so we delve into this wondrous art,
o

o DON,T VAV,
FORGET TO

w |OVEEACH %= https://github.com/jpalastus
say, OTHER ay, Joao-paulo.almeida-de-mendonca@grenoble-inp. fr

™ v, @alastus

To unlock the secrets of the atom’s heart.
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