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What we will cover on this talk?

- Density Functional Theory (DFT)
- What is DFT? What can we do with if?
- Theoretical Background
- Challenges in DFT
- How to expand if?

- Artificial Neural Network (ANN)
- What are ANNs? Why they are interesting do DFT?
- Understanding Feedforward Neural Networks
- How can it be a DFT Functional?
- Challenges in Training

- ANN Functionals
- Some examples on the literature and how they do it
- My work and how we do it at our group

- Preparing for the practical section!
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This is a very interdisciplinary topic 
and no one is expected to know 

everything about it. 

If not now, stop me at some moment 
on the conference and ask!

"We all know something. We all choose 
to ignore something. And that's why we 

always learn." (Paulo Freire)

Please, help me by making questions!



What is Density Functional Theory (DFT)? 
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“A theory used to describe many-fermion systems in which the 
energy is a functional of the density of fermions. Density functional 
theory has been used extensively in the theory of electrons in atoms, 
molecules, and solids and in the theory of nucleons in nuclei.”

(From A Dictionary of Physics - Oxford University Press)



How this is done?

Kinetic Energy Potential Energy



a proton is ~1840 times the electron mass 

Born-Oppenheimer Approximation: 
- The use an approximate ansatz for the complete many-body problem that 

allows the wave functions of atomic nuclei and electrons to be treated 
separately. 

- This approximation is motivated by the mass difference between nuclei and 
electrons.

- The electronic Hamiltonian than can be written as the kinetic energy of the 
electrons, the electron interaction with fixed nuclei, and the 
electron-electron interaction.



The normalized electronic wavefunction Ψ can 
be associated to a electronic density n(r):

This definition can be inverted for the ground state, so the density  
n0(r) unambiguously defines  Ψ0[n0(r)], and as consequence defines the 

ground state energy of the electronic system E0[n0(r)].

Hince, Density Functional Theory!



Thomas–Fermi Model
(1927)

Heisenberg and Dirac
(1926)

Hartree Method
(1927)

Slater Determinant
(1928)

Hatree–Fock Method 
with Slater Det. guess

(1930)

Dirac propose LDA
(1930)

 Hohenberg–Kohn Theo.
(1964)

Schrödinger Eq.
(1926)

Theorem 1. The external potential vext (and hence 
the total energy Etot), is a unique functional of the 
electron density n(r).

Theorem 2. The functional that delivers the 
ground-state energy of the system (Etot[n(r)]) gives 
the lowest energy E0 if and only if the input 
density is the true ground-state density.

VERY GENERAL
Valid for all systems where vext(r) 

defines pure ground state(s)!



Thomas–Fermi Model
(1927)

Heisenberg and Dirac
(1926)

Hartree Method
(1927)

Slater Determinant
(1928)

Hatree–Fock Method 
with Slater Det. guess

(1930)

Dirac propose LDA
(1930)

Kohn–Sham equations
(1965)

 Hohenberg–Kohn Theo.
(1964)

Schrödinger Eq.
(1926)

Single non-interacting particle approximation for n(r):

The single particle eigenstate problem can be solved using the  Kohn–Sham equations: 

We can recover the energy in the many-electrons system:
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Guess

      converged?
no

yes

 Kohn–Sham equation solved
self-consistently

We know from the  Hohenberg–Kohn Theorems 
that this 𝜀xc exist, but unfortunately it can not 

be derived from first principles.

Building good approximations for this functional 
is on the core of the quality of DFT results and 

applicability. 
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Kinetic-energy density 
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   “And he[Jabob] dreamed, and behold a ladder set up on 
the earth, and the top of it reached to heaven; and behold the 
angels of God ascending and descending on it.”

[Gen 28:12]



So why are we searching for new functionals?

● Challenge 1: The Need To Improve the Description of Reaction Barriers and 
Dispersion/van der Waals Interactions

○ Due to the local nature of the LDA or GGA functional form, it is not possible for these 
functionals to accurately describe this non-local phenomena.

○ Non-local functionals build over Hartree-Fock exchange are also completely wrong, since 
they all exhibit long-range repulsive behavior. The performance of most popular 
functionals on simple weakly bound dimers is extremely poor.

Adapted from Challenges for Density Functional Theory
A. J. Cohen, P. Mori-Sánchez, and W. Yang

dx.doi.org/10.1021/cr200107z

10.1016/j.chemphys.2015.07.005m



So why are we searching for new functionals?

● Challenge 2: Delocalization Error and Static Correlation Error
○ a single electron can interact with itself, known as self-interaction error.
○ The exact functional on the Hohenberg–Kohn Theory does not have any 

self-interaction, i.e., the exchange energy exactly cancels the Coulomb energy for one 
electron. 

○ This and similar errors are at the heart of many failures with the currently used 
approximations.

Adapted from Challenges for Density Functional Theory
A. J. Cohen, P. Mori-Sánchez, and W. Yang

dx.doi.org/10.1021/cr200107z



So why are we searching for new functionals?

● Challenge 3: The Energy of Two Protons Separated by Infinity with One and 
Two Electrons: Strong Correlation

○ Except for multiconfigurational methods, most mean-field theories struggle to describe 
strongly correlated systems. This is evident from some very simple tests involving infinitely 
separated protons with varying numbers of electrons. Currently, all functionals fail even 
for the simplest of these, infinitely stretched H2

+ and infinitely stretched H2.
○ In order to satisfy exact fundamental conditions and not to suffer from systematic errors, the 

energy functionals must have the correct discontinuous behavior at integer numbers of 
electrons.

Adapted from Challenges for Density Functional Theory
A. J. Cohen, P. Mori-Sánchez, and W. Yang

dx.doi.org/10.1021/cr200107z

10.1126/science.1158722



How are people trying to push DFA forward?
● Range separation and Local Hybrids: This was motivated by localization errors on 

DFAs. The idea, originally from the groups of Savin and Gill, whas to separate the 
electron-electron interaction into two parts, one long-range and the other short-range.

● Objective Oriented Fitting: Making educated guesses on the shape of the DFA functional, 
one can fit parameters to suit specific research interests. The efforts on this direction is 
what motivate the recent additions to the Minnesota family of functionals.

● Generalized Adiabatic Connection: Normal hybrids, like B3LYP, use a linear 
approximation to the adiabatic connection. Both Perdew, Burke (from PBE) and Yang 
(from LYP) have already expanded this approach using larger orders. Some functionals: ISI 
(2000), SPL (1999) and LB (2009).

● Functional of Unoccupied Orbitals: The idea here is to add a electron-electron interaction 
model that models excitations via the inclusion of the unoccupied KS orbitals in the 
exchange and correlation functional. Examples include LDA+U (2012) and the MP2 
based B2PLYP (2006).



And where does Machine Learning appear?
● We are in the Objective Oriented Fitting: All work on machine learning functionals is on 

that category. Machine learning is a data driven approach, so its subject dependent by 
definition.  

Learning Kinetic Energy
T[n(r)] (Snyder & Burke 2012)

Learning HK map
n[v(r)] (Li & Burke 2017)

Learning the EXC Functional
(Nagai, 2018)

KS equations as regularizer
(Li & Burke, 2021)

Physical Constrains
(Nagai, 2022)

Convolutional NN as EXC 
(Li & Burke, 2022)

Organics (COH)

1D toy model

Energetics of 
Organics (COH)

Energetics 3rd period of 
the periodic table

Same as before + a lattice 
parameter of many solids1D H and He systems

         “... [ML approximations] achieves chemical accuracy using many more inputs, 
but requires far less insight into the underlying physics.” 

(K. Burke, 2012)



20

Why Neural Networks and not a simpler thing?

● We want to approximate Exc[n(r)], that we know exist and is unique.

● But we also know that the one-to-one correspondence between n and Exc contains 
non-analytic structures (e.g., discontinuities and singularities).

● Neural Networks are shown to be good universal approximators even in the case of 
intricate functions. 
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The Neural Network Zoo - The Asimov Institute

Already used on Machine Learning Functionals
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Feed Forward Neural Network

Input
layer

Hidden
layer #1

Hidden
layer #2

Output
layer

x1

x2

x3

f1

f2

f(x)x
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Feed Forward Neural Network

w
(3x5)

b
(5)

x1

x2

x3

x’1

x’2

x’3

x’4

x’5

Inspired on how 
neurons work!
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Illustrations by Sefik Ilkin Serengil

Already used on Machine Learning Functionals
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Feed Forward Neural Network

w1

(3x5)
w2

(5x5)

w3

(5x2)

b1

(5)
b2

(5)

b3

(2)x1

x2

x3

f1

f2

x’1

x’2

x’3

x’4

x’5

x’’1

x’’2

x’’3

x’’4

x’’5



26

Artificial Neural Network as Exc Functionals
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● Ex and Ec
● εxc
● Parameters
● Corrections
● …



How do we get values for weights and biases?
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Relevant Features
i.e., the quantities in which my 
training should be based on.

Shape of the Loss Function
i.e., the relations between the 

features and how they define a good 
functional.

Training Data Set
i.e., defining the data used on the 
calculation of the loss function.

You will need to define a loss function (Δerr).
It should be:
● Be quick to compute,
● Represente the physico-chemical accuracy 

of the model

Δerr defines an order and equivalence relation 
in the solution space, having a global minimum 

on the perfect model.

TRAINING = OPTIMIZING Δerr
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From 10.2166/h2oj.2020.128

Combinatorial or continuous?

Non-gradient or gradient based?

Can we afford random search?



Learning Kinetic Energy
T[n(r)] (Snyder & Burke 2012)

Learning HK map
n[v(r)] (Li & Burke 2017)

Learning the EXC Functional
(Nagai, 2018)

KS equations as regularizer
(Li & Burke, 2021)

Physical Constraints
(Nagai, 2022)

Convolutional NN as EXC 
(Li & Burke, 2022)

Organics (COH)

1D toy model

Energetics of 
Organics (COH)

Energetics 3rd period of 
the periodic table

Same as before + a lattice 
parameter of many solids1D H and He systems

Adiabatic Energy Differences
(My work!)

Transition Metal Complexes

Sparse Data on Training
(Kasim & Vinko, 2021)

Same as before 
+properties not 
seen on training 

Projectors as n(r) Descriptors
(Dick &Fernandez-Serra, 2020)

Same as before + 
validation in weakly 

bounded system

DM21 -  Fractional Charge/Spin
(DeepMind, 2021)

Same as before 
+properties not 
seen on training 



Projectors as n(r) Descriptors
(Dick & Fernandez-Serra, 2020)
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Convolutional NN as EXC 
(Li & Burke, 2022)



DM21 -  DFT Functional from DeepMind, 2021
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“The resulting functional, DM21 
(DeepMind 21), correctly describes typical 
examples of artificial charge delocalization and 
strong correlation and performs better than 
traditional functionals on thorough benchmarks 
for main-group atoms and molecules.”



Physical Constraints (Nagai, 2022)

32
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Emilie Devijver
(CNRS, LIG)

Noel Jakse
(G-INP, SIMaP)

Roberta Poloni
(CNRS, SIMaP)

Lorenzo Mariano
(Postdoc, Trinity 

College)

Artificial Neural Network Meta-GGA based Density Functional for 
Adiabatic Energy Differences in Transition Metal Complexes

Λ and Δ-[Fe(ox)3]
3−

PtCl2(NH3)2

…

Isomerism Different ligands combination Metal 

Ligands 

Others involved 
in this work:

Many possible symmetries:

Available at [arXiv:2304.07899]



En
er

gy

RM-L

𝜟EH-L

RLS RHS

R M
-L

High Spin
(S=2)

Low Spin
(S=0)

Adiabatic Energy 
Difference

Spin crossover (SCO) is a phenomenon that occurs in some metal complexes wherein 
the spin state of the complex changes due to an external stimulus

Adiabatic energy difference: energy difference between two spin states computed at 
the corresponding geometry

𝜟EH-L=EHS-ELS

Challenge for any ab initio methods →Lack of error cancellation
34



CASPT2/CC is a multiconfigurational 
method that we take as reference for 

𝛥EH-L (expensive)

Different density functionals yield very 
different values of 𝛥EH-L.

Can a DFT functional be build 
(using machine learning)

to predict accurate values of 𝛥EH-L?

L. A. Mariano et al. Journal of Chemical Theory and Computation 
17.5 (2021): 2807-2816.
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Our Artificial Neural Network Functional

361503 parameters

H2O NH3 NO

FeO

Atomization Energies 
(AE)

Electronic Densities (⍴)

Adiabatic Energy Differences 
(ΔEHL)

⍴CCSD(T)

ΔEHL
Exp.

⍴CCSD(T)

AEref

CrH CuF

Different combinations of :

Architecture Loss Function

Training set



Training Algorithm: Modified PSO via Migrations
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Particle Swarm Optimization (PSO) 
● No need of evaluating the derivatives of the loss function with respect to the parameters of the 

functional
● Improves over Monte Carlo optimization exploring the phenomena of swarm intelligence

Migrations 
● Changing periodically the search box to follow the best solution
● Improves on the stability not generating searches too far from the best solution found in the 

present epoch

Idea: In practice:
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In
de

x

PCA FeO
 - C

0 2=
0.782, ΔE

H
L =

0.14eV, T
1 =

0.09

H2O NH3 NOFeO

Spearman Correlations

The optimization process is 
dominated by energetic 

properties and limited by the 
precision on ΔEH-L.
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FeO
The trained functional predicts densities closer to the CCSD(T) 

reference than to the original R2SCAN. 

REF

our work
dist = 0.48e

R2SCAN
dist = 1.2e
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Validation Set: Iron +2 Complexes

29 - Nagai, R., Akashi, R., and Sugino, O. “Machine-learning-based 
exchange correlation functional with physical asymptotic constraints.” 
Physical Review Research, 4.1 (2022): 013106.

28 - Mariano, Lorenzo A., Bess Vlaisavljevich, and Roberta Poloni. 
"Improved Spin-State Energy Differences of Fe (II) molecular and 
crystalline complexes via the Hubbard U-corrected Density." Journal of 
Chemical Theory and Computation 17.5 (2021): 2807-2816.

Ref. for ΔEH-L: CASPT2/CC
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Other Metal Complexes

Molecules from: "Spin state energetics in first-row transition metal complexes: contribution of 
(3s3p) correlation and its description by second-order perturbation theory." 
Kristine Pierloot, Quan Manh Phung, and Alex Domingo
Journal of chemical theory and computation 13.2 (2017): 537-553.



Preparing for the Practical Section

“Here be Dragons”
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Quantum Chemistry Software for DFT
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https://tddft.org/programs/libxc/
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Some tools and libraries for Neural Networks



What we will see on the Practical Section:

1. Basics of PySCF
○ Running basic calculations using DFT to compute energies of 

molecular systems
○ Additional informations on setting tricky calculations for 

charged/magnetic systems and controlling output options.
2. Running PySCF DFT with a customized functional

○ Exemple where we code PW86 functional by hand and mix it 
to PBE, highlighting the details on how it is done.

3. Crafting a basic multilayer perceptron with 
TensorFlow

○ Sample code of a very elementar implementation of a feed 
forward neural network using Tensorflow

4. Using a multilayer perceptron as functional
○ Writing a external functional in PySCF that uses a Neural 

Network to correct PBE.
5. Using a pre-trained ANN functional

○ We will use PySCF to run some computations with a Neural 
Network correction PBE trained only using H2O atomization 
energy.

The main goal of this tutorial is to allow 
you to comprehend how to implement and 

use a neural network functional.

This tutorial uses the very simple case of 
an machine learning functional that correct 

PBE and try to predict energies closer to 
the B3LYP ones for molecules only 

composed of O and H atoms. 

Even with its simplicity, this exemple show 
all the tools and elements necessary to 

extend to more complex cases.
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What you will need:

I strongly recommend to use the Google Colab!

You will need internet and maybe a google account…

pyscf https://pyscf.org/install.html

tensorflow https://www.tensorflow.org/

If you want to do the things in the harder way:
https://pyscf.org/install.html#pyscf-docker-image

https://pyscf.org/install.html
https://www.tensorflow.org/
https://pyscf.org/install.html#pyscf-docker-image


Acknowledgements

47

The team

Fundings:
● ANR - Agence Nationale pour la Recherche
● MIAI - Multidisciplinary Institute of Artificial intelligence (Grenoble)

Lorenzo Mariano
(Postdoc, Trinity 

College)

Emilie Devijver
(CNRS, LIG)

Noel Jakse
(G-INP, SIMaP)

Roberta Poloni
(CNRS, SIMaP)

Ashna Jose
(PhD, SIMaP/LIG)



Thanks for your attention!

https://github.com/jpalastus
joao-paulo.almeida-de-mendonca@grenoble-inp.fr

@alastus

https://github.com/jpalastus
mailto:joao-paulo.almeida-de-mendonca@grenoble-inp.fr

