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1. Optimization and ML
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What is Optimization ?

GOAL:
shortest possible path that 
visits each city exactly once
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https://makezine.com/2010/09/04/traveling-salesman-problem-art/



Modelling

mapping

Description of a candidate solution                              distance

Loss function
Cost function

…
Objective function
Fitness function

City1 -> City2->…->City1
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SOLUTION SPACE DECISION SPACE



Many problems can be formulated
as an optimization problem

Regression
Min dist

Classification

Log Loss:

6https://levity.ai/blog/what-is-an-image-classifier



What is Machine Learning ?

15 million players have 
contributed to 
50 millions of drawings
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Learning Types

• Supervised: data are labeled with predefined classes

• Unsupervised: only the data

• By reinforcement: no labels, but a reward.
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Evolutionary Algorithm
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• population evolves generation 
after generation

• genetic heritage evolves 
through random transformations

An example of optimization algorithm

https://fr.wikipedia.org/wiki/S%C3%A9lection_naturelle
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(NANTES, ANGERS, LE MANS, PARIS, NANTES)

Genotype

(NANTES, ANGERS, LE MANS, PARIS, NANTES)
(NANTES, LE MANS ANGERS, PARIS, NANTES)
(NANTES, PARIS, ANGERS, LE MANS, NANTES)

…

Population

1 2 3 4
1 3 2 4
1 4 2 3

5

4

1

2
3
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A genetic algorithm for TSP



Variation: Crossover and Mutation

11

1  2  3  4  5  6
5  4  6  3  2  1

1  2  3  4  5  6
5  4  6  3  2  1

*  *  6  3  2  *
*  *  3  4  5  *

4  5  6  3  2  1
6  2  3  4  5  1

6  1  2  3  4  5
1  5  4  6  3  2

4  5  6  3  2  1
6  2  3  4  5  1

4  5 6  3  2 1
6  2  3  4  5  1

4  2 6  3  5 1
6  2  3  4  5  1

filling candidates
order crossover

mutation



Population

EVALUATION

SELECTION

BREEDING

Evolutionary Cycle

Random
Individuals

Compute
fitness

Best individuals

Crossover + Mutation
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Initial population and space filling design
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Example of a biased method for compositional data
(normalization of the proportions) 

Mixture: 
X1, X2, X3

X1+X2+X3=1



A better approach
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size 1,000
Lower bound [0.1,0.1,0.1]
Upper bound [0.7,0.8,0.8]

Mixture: 
X1, X2, X3

X1+X2+X3=1



Selection

• Tournament selection
• choose 2 individuals at random

• select the best one

• Fitness proportionate selection
• Selection probability is proportional to the fitness of the individual

• Similar to the roulette wheel in a casino
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Himmelblau's multimodal function

F(x,y) ≥ 0
4 points such as F(x,y)=0
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Application to Himmelblau’s function (part 1)
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Application to Himmelblau’s function (part 2)



2. Constrained Multiobjective Optimization
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Superalloy Design
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nickel-base superalloys: 1016 combinations



Objectives and Constraints
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Equilibrium characteristics

• high-temperature stability
• Processability

Thermomechanical properties

• tensile strength
• creep resistance
• …



Constraint Handling in MO

• Only generate feasible solutions

• Repair unfeasible solutions

• Consider a constraint as an objective
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Example of constraints: the simplex
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(1) x1 + x2 + x3 + x4 = 1

(2) xi ≥ 0

https://en.wikipedia.org/wiki/Simplex



A differentiel evolution operator
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B

C

A

• Three parents
• A is the anchor
• Orientation given by B and C

X

X lies in the same hyperplane as its parents 



Second constraint
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(1) x1 + x2 + x3 + x4 = 1

(2) xi ≥ 0

Inverse Parabolic Spread Distribution

G. Ramstein et al. 
A multi-objective differential evolution approach for optimizing mixtures
OLA 2022



Constraint as objective
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τ

Example:

𝐺 𝑋 < τ

Pseudo objective:

f(X, τ)= G(X)- τ if G(X) > τ

= 0          otherwise
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Objectives and Dominance

x1 dominates x2 if:
• solution x1 is not worse than x2 in all objectives
• solution x1 is strictly better than x2 in at least one objective



Objectives and Pareto Front

non dominated

dominated

Objective 1

Objective 2

Multiobjective: a set of solutions
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Population

EVALUATION

SELECTION

BREEDING

Evolutionary Cycle for MO

Random
Individuals

Compute
objectives and
constraints

Pareto-based

Crossover + Mutation
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Pareto-based Selection (NSGA II)

Objective 1

Objective 2

PF1

PF2

PF3
• Non dominated Sorting
• Crowding distance Sorting
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A bi-objective Optimization example
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Constraints:

Objectives:



Results

Pareto Front: cost vs CRS

• the stronger an optimized alloy,
the greater its cost

• The creep resistance varies with the price range 

of the alloy.
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A quick analysis of the results:

gradual substitution of nickel by cobalt 
for the most creep-resistant alloys, reaching
almost 21 wt% for the most expensive ones
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For more details and

a 'real-world' case (6 objectives):

Edern Menou et al 2016 

Modelling Simul. Mater. Sci. Eng.

24 055001



3. Bayesian Optimization
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Bayesian Optimization

CMO works well, but the exploration of the decision space
can be very time consuming
(e.g. thermodynamic properties of alloys)

Introduction of a surrogate model
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Surrogate Model

Exact Evaluation

Y  =  f(X)

Surrogate Model

Y       f(X) 

Solution Space

X: candidate

Expensive

Low Cost

Training
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Gaussian Process Regression (Kriging)

Training points

Prediction

Exact evaluation
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P0
UpdateMdl

Done

EA

no

yes

Selection

Exact Evaluation

Y  =  f(X)

Learn the model

Evolutionary Algorithm

Extract Best candidate

Stop after N cycles
(or other termination criterion)

GENERAL
ARCHITECTURE
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Acquisition Functions

Training points

Prediction μ, σ

What are the best candidates
in current EA population ?
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evaluate the usefulness of design points for achieving objectives/constraints



Given k constraints,

Knowing k couples (μ, σ),

What is PoF ?

Probability of Feasibility (PoF)

μ

PoF

0.5
k
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EHVI
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Solution Space Decision Space Fitness: PoF x EHVI

EA

Surrogate Model

Y     f(X)

Data flow
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Minimize:

X  = (x1 , x2 , x3 , x4 , x5 , x6 ), 0 ≤  xi  ≤ 1

h(X) = 10.(x4
2 + x5

2 + x6
2)

f1(X) = ( 2x1
2 + 2x2

2 )(1+h(X))

f2(X) = ( 2(x1– 0.5)2+ 2(x2– 0.5)2 )(1+h(X))

Illustrative Example
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f1                 

f2                 
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Batch Bayesian Optimization

Extract q candidate solutions instead of a unique one at each iteration

Optimizer Evaluator

wait

Compute obj/constr

sendO

Search for alloys

sendS

q candidates
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Objective 1

Objective 2

EHVI max

Objective 1

Objective 2

EHVI 
max

A simple technique: Kriging Believer
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Illustrative Example

f1                 f2
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Conclusion

• Optimization is a major issue in many fields of activity

• classical trial-and-error alloy development can be ineffective

• exploration of a search space of billions of alloys is challenging

• Handling multiple constraints and many objectives.

• Bayesian Optimization techniques reduce the computational cost.

• multi-criteria decision analysis: choosing an alloy among several 
thousand Pareto-optimal ones.
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