

Solving optimization problems with machine learning Application to materials science Gérard Ramstein

Laboratoire des Sciences du Numérique de Nantes

Collaboration with F. Tancret (Institut des Matériaux de Nantes)

Outline

- 1. Optimization and ML
- 2. Constrained Multiobjective Optimization
- 3. Bayesian Optimization

1. Optimization and ML

Many problems can be formulated as an optimization problem

What is Machine Learning ?

00

15 million players havecontributed to50 millions of drawings

Learning Types

- Supervised: data are labeled with predefined classes
- Unsupervised: only the data
- By reinforcement: no labels, but a reward.

An example of optimization algorithm

Evolutionary Algorithm

- population evolves generation after generation
- genetic heritage evolves through random transformations

https://fr.wikipedia.org/wiki/S%C3%A9lection_naturelle

A genetic algorithm for TSP

(NANTES, ANGERS, LE MANS, PARIS, NANTES)

Genotype

(NANTES, ANGERS, LE MANS, PARIS, NANTES) (NANTES, LE MANS ANGERS, PARIS, NANTES) (NANTES, PARIS, ANGERS, LE MANS, NANTES)

•••

Population

Variation: Crossover and Mutation

Initial population and space filling design

Mixture: X1, X2, X3

X1+X2+X3=1

Example of a biased method for compositional data (normalization of the proportions)

A better approach

Selection

- Tournament selection
 - choose 2 individuals at random
 - select the best one
- Fitness proportionate selection
 - Selection probability is proportional to the fitness of the individual
 - Similar to the roulette wheel in a casino

Himmelblau's multimodal function

 $F(x,y) \ge 0$ 4 points such as F(x,y)=0

Application to Himmelblau's function (part 1)

Application to Himmelblau's function (part 2)

2. Constrained Multiobjective Optimization

Superalloy Design

н															_		Не
Li	Ве								в	С	Ν	0	F	Ne			
Na	Mg								AI	Si	Ρ	S	СІ	Ar			
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe
Cs	Ва		Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
		Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Element	Bounds	Step
Ni	Bal.	
Co	0-21	
Fe	0-30	
Cr	15-25	
Mo	0-2	0.1
W	0–6	
Nb	0–5	
Al	0–5	
Ti	0–5	
С	0-0.15	0.01
В	0.005	

nickel-base superalloys: 10¹⁶ combinations

Objectives and Constraints

Equilibrium characteristics

- high-temperature stability
- Processability

Thermomechanical properties

- tensile strength
- creep resistance
- ...

Constraint Handling in MO

- Only generate feasible solutions
- Repair unfeasible solutions
- Consider a constraint as an objective

Example of constraints: the simplex

(1) $x_1 + x_2 + x_3 + x_4 = 1$ (2) $x_i \ge 0$

https://en.wikipedia.org/wiki/Simplex

A differentiel evolution operator

X lies in the same hyperplane as its parents

Second constraint

(1)
$$x_1 + x_2 + x_3 + x_4 = 1$$

(2) x_i ≥ 0

Inverse Parabolic Spread Distribution

Nikhil Padhye, Kalyan Deb, and Pulkit Mittal. Boundary handling approaches in particle swarm optimization. Advances in Intelligent Systems and Computing, 201, 12 2013.

G. Ramstein et al.
 A multi-objective differential evolution approach for optimizing mixtures
 OLA 2022

Constraint as objective

Example: $G(X) < \tau$ Pseudo objective: $f(X, \tau) = G(X) - \tau$ if $G(X) > \tau$ = 0 otherwise

Objectives and Dominance

x1 dominates x2 if:

- solution x1 is not worse than x2 in all objectives
- solution x1 is strictly better than x2 in at least one objective

Objectives and Pareto Front

Pareto-based Selection (NSGA II)

A bi-objective Optimization example

Constraints:

- alloys should only be constituted of γ , γ' and M₂₃C₆ phases at both 700 °C and 750 °C;
- a maximum amount of 25 mol% γ' at 750 °C is tolerated to ensure weldability;
- a minimum amount of 24 at% Cr in the (γ) matrix at 750 °C is required for corrosion resistance.

Objectives:

- the minimisation of the heat price, estimated on the basis of the cost of individual elements as found on the market on the date of study, relative to the cost of nickel;
- the maximisation of the 'lowered' creep rupture stress, $CRS^{-1\sigma}$, at 750 °C after 10³ h.

Results

Pareto Front: cost vs CRS

- the stronger an optimized alloy, the greater its cost
- The creep resistance varies with the price range of the alloy.

A quick analysis of the results:

gradual substitution of nickel by cobalt for the most creep-resistant alloys, reaching almost 21 wt% for the most expensive ones

For more details and a 'real-world' case (6 objectives):

Edern Menou *et al* 2016 *Modelling Simul. Mater. Sci. Eng.* **24** 055001

3. Bayesian Optimization

Bayesian Optimization

CMO works well, but the exploration of the decision space can be very time consuming (e.g. thermodynamic properties of alloys)

Introduction of a surrogate model

Surrogate Model

Gaussian Process Regression (Kriging)

Acquisition Functions

evaluate the usefulness of design points for achieving objectives/constraints

What are the best candidates in current EA population ?

Probability of Feasibility (PoF)

Given k constraints, Knowing k couples (μ, σ), What is PoF ?

EHVI

Data flow

Illustrative Example

Minimize:

$$X = (x_1, x_2, x_3, x_4, x_5, x_6), 0 \le x_i \le 1$$

$$h(X) = 10.(x_4^2 + x_5^2 + x_6^2)$$

$$f_1(X) = (2x_1^2 + 2x_2^2)(1+h(X))$$

$$f_2(X) = (2(x_1 - 0.5)^2 + 2(x_2 - 0.5)^2)(1+h(X))$$

Bayesian Optimization

Batch Bayesian Optimization

Extract q candidate solutions instead of a unique one at each iteration

A simple technique: Kriging Believer

Illustrative Example

Batch Bayesian Optimization

Conclusion

- Optimization is a major issue in many fields of activity
- classical trial-and-error alloy development can be ineffective
- exploration of a search space of billions of alloys is challenging
- Handling multiple constraints and many objectives.
- Bayesian Optimization techniques reduce the computational cost.
- multi-criteria decision analysis: choosing an alloy among several thousand Pareto-optimal ones.