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Methods vs computational cost
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Coupled Cluster Theory

• CCSD: 

• T1,T2: single and double 
substitutions
triples are treated perturbatively

• exponential ansatz: allows 
systematics inclusion of highest 
degree of correlations (Taylor 
expansion)

•  Gold standard method in the 
quantum chemistry community:
reaches chemical accuracy for most 
applications

• O(N6) complexity

 
Liao, Ke, and Andreas Grüneis. 2016. “Communication: Finite Size Correction in Periodic Coupled Cluster Theory 
Calculations of Solids.” The Journal of Chemical Physics 145 (14): 141102. 



Case study: adsorption enthalpy of CO2 in 
protonated chabazite

•  Ab-initio Molecular Dynamics (AIMD) - 200K steps
-CCSD(T) ⟶ 10B CPU Hours ⟶ 1000 human years 

• Machine learning thermodynamic perturbation theory (MLPT)
a “cheap” AIMD (e.g. PBE) + only a few number (~100) of CCSD(T) 
calculations ⟶ 1 human week

B. Chehaibou, M. Badawi, T. Bucko, T. Bazhirov, and D. Rocca, JCTC (2019)



Machine Learning Thermodynamic Perturbation Theory 

AIMD
Perturbation 

theory

MLExtract 
Training set

1. AIMD is performed using the cheap theory

2.                              is learned on Ntrain~100 configurations evenly spaced from the MD
                                             

3. Perturbation theory is applied to  

 



Thermodynamic Perturbation Theory

•Computationally cheap 
Hamiltonian (e.g. PBE)

•Average in canonical ensemble 
of 

•Computationally expensive 
Hamiltonian (e.g. CCSD(T))

•Average in canonical ensemble 
of

 

 



Machine Learning model : Descriptor & KRR

•Smooth Overlap of Atomic 
Positions
(SOAP)

•Kernel Ridge Regression (KRR)
Structures Gaussian

smoothing

Albert P. Bartók, Risi Kondor, and Gábor Csányi, PRB 2013
Sandip De, Albert P. Bartók, Gábor Csányi, and Michele Ceriotti, PCCP 2016



Machine Learning model : Δ-Machine Learning

ΔE: smooth function, easy to 
learn

Small training set:
Ntrain=100/Nval=10

System HCHAB CO2@HCHAB

RMSE
(kcal/mol)

0.50 0.63

R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld, JCTC (2015)
B. Chehaibou, M. Badawi, T. Bucko, T. Bazhirov, and D. Rocca, JCTC (2019)



Results  : CO2@HCHAB

• Good agreement with experiment, within chemical accuracy

• First finite temperature result at this level of theory

Method PBE-D2 MP2 CCSD(T) Exp.

Enthalpy
(kcal/mol)

-9.72 -9.50 -7.69 -8.41



Possible sources of error

Production and target methods might 
have insufficient statistical overlap:           
averages in target space would be 
dominated by few configurations. 

Solution: Machine Learning 
Monte-Carlo (MLMC)

N,M such that

: MLPT will fail

B. Herzog, M. Chagas da Silva, ... & D. Rocca,  JCTC (2022). 



Machine Learning Monte-Carlo

Propose i
Accept

/
Reject i

ML

1. Energy of the proposed configuration is computed using the cheap theory 

2. Correction to the expensive theory is done using the ML model of the previous MLPT
                                             

3. Sampling is done in the expensive configurational space until convergence
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Example: MLPT estimate of SCAN energy from PBE

• CH4 in protonated chabazite

• Case study with DFT functionals 
SCAN & PBE. MD reference is known

•  MLPT ⟶ Iw=0, bad overlap, big 
deviation compared to reference

• MLMC trajectory lies in correct 
configurational space, good 
agreement with reference

ΔE(MLPT) ΔE(MLMC)

-4.38 0.64



Conclusion

•  The MLPT method allows computation of highly accurate 
thermodynamic property at CCSD(T) level for the first time

• Monte-Carlo resampling is currently running to confirm this result

• Future directions: other porous materials applications, surface 
adsorption problems, activation energies
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