

The recourse to artificial intelligence to design Co-free wear-resistant alloys

Lisa Rateau^{a,b,c}, Gérard Ramstein^d, Jean Dhers^a, Anna Fraczkiewicz^c, Franck Tancret^b

^a Framatome, Lyon, France

^b Nantes Université, CNRS (UMR 6502), Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes, France

^c MINES St-Etienne, CNRS (UMR 5307), Laboratoire Georges Friedel, LGF, Saint-Etienne, France

^d Nantes Université, CNRS (UMR 6004), Laboratoire des Sciences du Numérique de Nantes, LS2N, Nantes, France

alisa.rateau@etu.univ-nantes.fr

Context

- Stellite alloys (Co-Cr) : currently used in nuclear industry as welded wear-resistant coating
 - Issue : Co presence (mainly irradiation)
- Several alloys developed for Stellite replacement
 - NOREM and Nitromaxx : Fe-Cr-Si-C-N [1]
 - FeCrB : Fe-Cr-Si-C-B [2]
 - Issue : lack of high temperature (>180°C) mechanical properties stability

	%wt.	Fe	Cr	Si	Mn	Мо	Ni	С	В	N
	NOREM	Bal.	25	3	4	2	4	1.3	-	0.2
006	FeCrB	Bal.	20	1	-	-	-	1.8	0.7	-

[1] EPRI Patents, **1989**[2] Yoo et al. , *Journal of Nuclear Materials*, **2006**

Purpose et strategy

• PURPOSE

Design of improved alloys :

- Co-free and Fe-rich alloys
- Mechanical and tribological properties similar to Stellite

• STRATEGY

Machine learning models Hardness

 Correlate hardness and alloy composition Using ML [3], multi-variable regression

 → Creation of the model
 Learning from bibliographic data
 → Confirmation of the model
 Prediction of hardness for bibliographic alloys
 With only Fe-based alloys

Satisfactory agreement between experimental data and predictions Stellite used only as reference

31/05/2022

[3] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning, 2006

Machine learning models Wear resistance (1)

- Issue : scarce experimental data difficult to use for ML
- Different experimental conditions

Configuration of test [4] Shape of the counterpart [4] Load

Temperature Environment

Measured data

Depth, volume of wear track Wear rate Friction coefficient

[4] B. Bhushan, Modern Tribology Handbook, 2000

Sphere Domed wheel

 But, often a paper compares different alloys using the same set of conditions

 Ranking alloys : Pair-wise comparison algorithm : SpringRank Ranking by performance

31/05/2022 -

Machine learning models Wear resistance (2)

- Comparisons matrix built from wear tests results :
 - 35 compared alloys
- 3 types of comparisons matrix :
 - « With weight» : from raw data (wear tests results)
 - « Without weight » : if $\frac{v_3}{v} \neq 0$, replaced by 1
 - « Smooth weight » : log(²Weight)+1
- SpringRank algorithm :
 - Search a minimum energy with consecutive permutations
- Same SpringRank scores as a function of matrix
- With weight » matrix chosen for next step
- Rank 1 attributed to the better SpringRank score Alloys ranked from 1 to 35

Comparisons matrix in case of A_3 is better than A_2 , with raw data

31/05/2022

JA GDR IAMAT

Machine learning models Wear resistance (3)

JA GDR IAMA

- Correlation wear rank and composition Using ML, same method as hardness
- Model using Fe-, Ni- and Co-based alloys

 Satisfactory agreement between experimental data and predictions
 Predictions are possible from any composition

Thermodynamic models

- CalPHaD : Calculation of PHase Diagrams Thermo-Calc [®] software, TCFE9 database
- Scheil-Gulliver model of solidification

Criteria :

31/05/2022

- Identified structure
 - Delta-ferrite (δ, hot cracking resistance)
 - Austenite
 - Eutectic(s) mixtures : (carbides/borides) + austenite
- Corrosion resistance
 - Cr content > 16%wt. in austenite

Alloy design

- Searching for an original optimized chemical composition using a multi-objectives genetic algorithm [5]
 - Objectives : To minimize or maximize
 - Constraints : To select alloys according to specifications
- More than 1000 « non-dominated » compositions
 - 2 alloys selected for experimental assessments (AS1 and AS2)

%wt.	Fe	Cr	Si	Mn	Мо	Ni	Nb	С	В
AS-Series	Bal.	15-30	<1.5	<5	<5	<5	<3	<2	<2

- Ingots elaboration
 - Cold crucible induction melting
 - At MINES Saint-Etienne

[5] E. Menou, Modelling Simul. Mater. Sci. Eng., 2016

Experimental assessment

- Experimental assessment
 - Vickers hardness

Experimental assessment

- Experimental assessment
 - Vickers hardness
 - Microstructure et comparison with predictions
 - Wear tests
- Experimental conditions Ball-on-disc
 - Normal load 10N
 - Room temperature
 - Without lubricant
 - Tungsten carbide (WC) ball

31/05/2022

Conclusion

- Different tools of machine learning et thermodynamic have been used for the design of new wear-resistant alloys to replace Stellite grade :
 - <u>Hardness</u> : multi-variable regression
 - <u>Wear resistance</u>: coupling pair-wise comparison ranking and multi-variable regression
 - <u>Thermodynamic</u> : Calphad method with Scheil-Gulliver model of solidification
 - <u>Alloy design :</u> multi-objectives genetic algorithm
- 2 original and optimised alloys have been elaborated (AS1 and AS2) and tested :
 - Confirming hardness and wear resistance models
 - Ang giving promising results