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Today’s topics’ connection to ML,
but rather consider the school is about 
advanced computing schemes for materials!
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I. Scope: impurity solving 
with a quantum computer 
for DMFT calculations What is DMFT? How can 

quantum computers 
enter the game?
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Strongly-correlated materials’ spherical cow: Hubbard model 

𝐻𝐻𝑢𝑏 = 𝑼

𝑖

𝑛𝑖↑𝑛𝑖↓ − 𝜇

𝑖,𝜎

𝑛𝑖𝜎 − 𝒕 

⟨𝑖,𝑗,𝜎 ⟩

𝑐𝑖𝜎
† 𝑐𝑗𝜎

Construct abstract model capturing competition between
localization and itinerancy

𝑼

𝒕

Rich phase diagrams! But extremely
complicated to solve….
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Dynamical Mean-Field Theory (DMFT) approach: go back to an atomic picture!

𝑼

𝑡

mapping

𝑼

𝐻𝐻𝑢𝑏 = 𝑈

𝑖

𝑛𝑖↑𝑛𝑖↓ − 𝜇

𝑖,𝜎

𝑛𝑖𝜎 − 𝑡 

⟨𝑖,𝑗,𝜎 ⟩

𝑐𝑖𝜎
† 𝑐𝑗𝜎 𝐻𝑒𝑚𝑏 = 𝑈𝑛0↑𝑛0↓ − 𝜇(𝑛0↑+ 𝑛0↓)

+ 

𝑝>1,𝜎

𝑉𝑝(𝑐0𝜎
† 𝑐𝑝𝜎 + ℎ𝑐) +

𝑝

𝜖𝑝( 𝑛𝑝↑ + 𝑛𝑝↓)

local, correlated part

hybridization uncorrelated ‘bath’Mapping??

Simpler, but still many-body!
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Dynamical Mean-Field Theory (DMFT) approach: go back to an atomic picture!

Crucial quantity to explore local degrees of freedom: local Green’s function
(describes propagation of electrons and holes in the medium)

Relates to Angle-Resolved PhotoEmission Spectroscopy (ARPES) experiments
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Dynamical Mean-Field Theory (DMFT) algorithm

𝑼

𝑡

𝑼

Σ𝑙𝑜𝑐(𝜔, 𝒌) ← Σ𝑖𝑚𝑝(𝜔)

𝐺0
−1 = Σ𝑖𝑚𝑝 + 𝐺𝑙𝑜𝑐

−1[Σ𝑖𝑚𝑝]

Dyson equation→ self-consistency

DMFT approximation:

Dyson equation:

Solve impurity model = compute (TF of)

𝐺𝑖𝑚𝑝(𝑡) = −𝑖⟨𝜓0|𝑇𝑑0 (𝑡)𝑑0
†|𝜓0⟩

Σ𝑖𝑚𝑝 𝜔 = 𝐺0
−1 − 𝐺𝑖𝑚𝑝

−1

𝐺0
−1

Σ𝑖𝑚𝑝

𝐺0
−1

Bottleneck of all
classical methods
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…then, what about solving the impurity model with a quantum computer?

- Qubits: lean towards discrete, Hamiltonian-based approach (as opposed to diagrammatic)
- Requires to deal with embedded Hamiltonian→ electronic structure Hamiltonian, very sparse:

𝐻 = ℎ𝑝𝑞𝑐𝑝
†𝑐𝑞 +

1

2
 ℎ𝑝𝑞𝑟𝑠 𝑐𝑝

†𝑐𝑞
†𝑐𝑟𝑐𝑠

→ Up to 𝑂 𝑛4 terms, manageable!  

- Qubit registers can store the wavefunction without an exponential cost, and (as we’ll see) 
implement time evolution. At least from textbook quantum mechanics, it seems very promising
to resort to a quantum computer!!*

*no obvious exponential bottleneck to be seen anywhere☺

- Looking for a review about QC for many-body problems? arxiv:2303.04850

9



II. Quantum computing 
101 How to compute with a 

quantum device?
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The quantum 
bit (qubit)

Bloch sphere representation:

(im
age: Jazaeriet al, 2

0
1

9
)

𝑛 qubits → 2𝑛 bitstrings 00…0 , 00…1 ,… , |11…1⟩

computational basis states

There are several ways to create and manipulate qubits.
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II.1. Paradigms

Analog QC / Simulator Digital / Universal QC Emulator

Schrödinger time evolution 𝑇𝑒−𝑖∫ 𝐻𝑟𝑒𝑠 𝑡 𝑑𝑡 under 
some resource Hamiltonian 𝐻𝑟𝑒𝑠 with tunable
control fields

Any unitary evolution Testing of 
algorithmic
strategies on a 
classical
supercomputer

Ultracold atoms, Rydberg atoms, spin qubits… Superconducting qubits, trapped
ions…

Atos’ Quantum 
Learning 
Machine

Consider… With…
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II.2. Circuit model 

time

List of operations
= gates

Initial state

Projective measurement
(in Z basis)

Qubit line, # = width

depth

13



II.3. Gate model

Fine control over
resource Hamiltonian
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II.3. Gate model

𝑋 =
0 1
1 0

= 0 1 + |1⟩⟨0| 𝑌 =
0 −𝑖
𝑖 0

𝑍 =
1 0
0 −1

Pauli gates:

Pauli rotations:

𝑅𝑋 𝜃 = 𝑒−
𝑖𝜃
2 𝑋 = cos

𝜃

2
𝐼 − 𝑖 sin

𝜃

2
𝑋, 𝑅𝑌 𝜃 = ⋯

0 →
1

0
, |1⟩ →

0

1

Logical NOT gate!

What about gates
on more qubits?

C(ontrolled)- NOT gate

0 1

0 00 11

1 10 01

control 

ta
rg

et

control 

target

Hadamard gate:
𝐻 =

1

2

1 1
1 −1

No more-qubit gates? 
Any unitary can be decomposed onto single and two-qubit gates (albeit with possibly exp #) 
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II.4. Measuring observables

Observable = Hermitian operator 𝑂 = 𝑂† so that 𝜓 𝑂 𝜓 ∈ ℝ
Decomposes as 𝑂 = σ𝑘 𝜆𝑘𝑃𝑘 , 𝑃𝑘 : Pauli word 𝜎1𝜎2…𝜎𝑁, 𝜎𝑗 ∈ {𝐼, 𝑋, 𝑌, 𝑍}
Example: number operator (counts #1’s in bitstring)

𝑁 =
1

2
𝐼 −

𝑖

𝐼 ⊗ 𝐼 ⊗⋯⊗𝑍𝑖 ⊗ 𝐼 ⊗⋯⊗ 𝐼 =
1

2
(𝐼 −

𝑖

𝑍𝑖)

Qubits are measured in the Z basis: 0 → +1, 1 → −1

Measurement in X or Y basis: small gate overhead
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II.4. Measuring observables

0

10

20

30

40

50

60

|00> |01> |10> |11>

Exact Draws

0 1 1 2

𝑁 =𝑓 𝑏𝑖 ×

𝑓 𝑏𝑖 × 100

𝑏𝑖

Shot noise

Born’s rule : 

𝑝(|𝑏𝑖⟩) = | ቚ𝑏𝑖 𝜓⟩
2

Easy case: Pauli words commute Most general case: averaging over Pauli words’ expectation values

Remark: very naive
(typically, k-locality→ some Pauli strings commute)

17



III. Tackling a quantum 
many-body problem with a 
quantum computer

How to represent 
fermionic systems with 
qubit states? How to 
measure fermionic 
Hamiltonians?
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III.1. Encoding

Encoder

Fermionic Hamiltonian Qubit Hamiltonian

𝐻( 𝑐𝑖
†, 𝑐𝑖 ) 𝐻( 𝐼, 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 )

Fermionic state Qubit state

19

(𝑐𝑀−1
† )𝑛𝑀−1 …(𝑐0

† )𝑛0|ത0⟩ |𝑏0𝑏1…𝑏𝑀−1⟩



III.1. Encoding

- Spin-orbitals (SO): empty or filled with one electron, qubits: 0 or 1
- Most straightforward encoding: empty → 0, filled → 1, namely: 

𝑛𝑖 = 𝑏𝑖 (Jordan-Wigner, drawback: lose locality, see below)
- What about anti-commutation relations? 

( X gate=NOT gate: 
𝑋 0 = |1⟩ )

20

𝑐𝑝
†, 𝑐𝑞 = 𝛿𝑝𝑞𝐼

𝑐𝑝, 𝑐𝑞 = 0

𝑐𝑝
† → 𝑍0 ⊗𝑍1 ⊗⋯⊗𝑍𝑝−1⊗

1

2
𝑋𝑝 − 𝑖𝑌𝑝 ⊗ 𝐼𝑝+1 ⊗⋯⊗ 𝐼𝑛

Enforce ACR
Ladder operator→ deal with local occupancy

0 0
1 0



III.2. Measuring Green’s functions: a black-box circuit

Ground state Time-evolution operator

Green’s functions elements of the form 𝜓0 𝑐𝑝(𝑡)𝑐𝑞
†|𝜓0⟩

Heisenberg representation: 𝑐𝑝 𝑡 = 𝑈 𝑡 †𝑐𝑝𝑈(𝑡), with 𝑈 𝑡 = 𝑒−𝑖𝐻𝑡

Jordan-Wigner encoding: 𝑐𝑝
†~

1

2
𝑋𝑝 − 𝑖𝑌𝑝

Needed: 𝐶𝑘𝑙 ≡ ⟨𝜓0|𝑈 𝑡 †𝜎𝑘 𝑈 𝑡 𝜎𝑙 |𝜓0⟩, accessible as 𝑍0 + 𝑖 Y0 where 0 labels the ancillary qubit of
the following circuit:   

H H

U(t)𝜎𝑙 𝜎𝑘|𝜓0⟩

|0⟩

Y/Z
~ beam splitter

Interferometry
experiment! 21



IV. Ground state 
preparation How do I put my qubit 

register in the state 
representing my target 
ground state?
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IV.1. A word on adiabatic state preparation

23

- Theoretical guarantee to attain GS within time-evolution under
interpolation Hamiltonian if T > 1/Δ2: adiabatic theorem

- Exists as a digital (=gate-based) algorithm (incurs massive gate
count, not reviewed here)

- But, important insight: putting gates mirroring terms of the 
Hamiltonian in a quantum circuit should lead to the GS

- Can’t we find a ‘diabatic shortcut’ to the GS?

𝛼 = 𝛼 𝑡 , 𝛼 0 = 0, 𝛼 𝑇 = 1
𝐻𝛼 = 𝛼𝐻𝑓 + 1 − 𝛼 𝐻0



IV.2. Variational Quantum Eigensolver

- Starting point: Rayleigh-Ritz principle (as seen in F. Vicentini’s talk) 𝜓0 = argmin|𝜓⟩∈ℋ
𝜓 𝐻 𝜓

𝜓 𝜓

Hilbert space ℋ

V

24

- Hilbert space is huge, and GS have structure… → explore small, relevant subspace:

argmin 𝜓 ∈V

𝜓 𝐻 𝜓

𝜓 𝜓
= ∼ |𝜓0⟩

[Peruzzo, 2014]



IV.2. Variational Quantum Eigensolver

𝜓(𝜽∗) = argmin𝛉 𝜓 𝜽 𝐻 𝜓 𝜽

VQE recipe for GS preparation: 

Select variational manifold (of physical states 𝜓 𝜽 𝜓 𝜽 = 1) and find optimal parametrization
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Define search space with parametrized quantum circuit: Comes with intrinsic expressivity: 

…but can accomodate capabilities of your QC!



IV.2. Variational Quantum Eigensolver

𝜓(𝜽∗) = argmin𝛉 𝜓 𝜽 𝐻 𝜓 𝜽

Quantum computer

Classical computer

Goal: find optimal parametrization

𝜓 𝜽 𝐻 𝜓 𝜽

Expectation value

𝜽Parametrization

26

Optimization of a cost function ℝ𝑛 → ℝ: evaluation of cost on QC, parameters update with classical computer



IV.2. Variational Quantum Eigensolver

𝜓(𝜽∗) = argmin𝛉 𝜓 𝜽 𝐻 𝜓 𝜽Goal: find optimal parametrization

27

Optimization of a cost function ℝ𝑛 → ℝ: evaluation of cost on QC, parameters update with classical computer

QPU/CPU hybridization



IV.2. Variational Quantum Eigensolver

Actually, remember that cost function evaluation is already hybrid! Putting things together:

𝜓 𝜽 𝐻 𝜓 𝜽

Expectation value

𝜽Parametrization
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IV.2. Variational Quantum Eigensolver

Actually, remember that cost function evaluation is already hybrid! Putting things together:

𝜓 𝜽 𝐻 𝜓 𝜽

Expectation value

𝜽Parametrization

29

Finally, something along the lines
of Machine Learning!!

Gradient descent, scipy’s usual
optimizers, natural gradient, etc… 

the whole artillery is welcome
here!



IV.2. Variational Quantum Eigensolver

30

Which circuits for fermionic ground states?

Two main classes:

Type of circuit Physically-motivated Hardware-efficient

Expressivity buildable

Noise resilience

Optimization
(Barren plateaus due to lack of 
structure)

Examples « Low-Depth Circuit Ansatz »
Elaborating upon free-fermions 
states preparation
[Dallaire-Demers, 2018]

Stacking layers of dressed CNOT 

Echoes Filippo’s talk: importance of using knowledge of the physics of your system!



IV.2. Variational Quantum Eigensolver

31

« Low-Depth Circuit Ansatz » elaborating upon free-fermions states preparation: gold standard for fermionic
states preparation (but too deep for noisy QC)

Based on preparation of GS of uncorrelated fermionic Hamiltonians

Generalizes to correlated states thanks to addition of 𝑅𝑍𝑍 gates (+ stacking of identical parametrized routines)



IV.2. Variational Quantum Eigensolver

32

A nice shot-noise resilient optimization algorithm proposed by ML/QC people [Ostaszewski, 2019]: Rotosolve

- Applies to specific circuits only (CNOT and rotations-based
are eligible)
- Based on analytical formula for the gradient (parameter-
shift rule)

→ Local optimal update rule:

𝜃𝑖
(𝑛𝑒𝑤)

= 𝑓 𝐸 𝜃𝑖
𝑜𝑙𝑑

, 𝐸 𝜃𝑖
𝑜𝑙𝑑

−
𝜋

2
, 𝐸 𝜃𝑖

𝑜𝑙𝑑
+
𝜋

2

- Global minimization of loss function by cycling through all 
the parameters until stopping criterion is met.



V. Time-evolving on a chip: 
trotterization algorithm

How do I implement time 
evolution with gates?

33



34

𝐻 = σ𝑗 𝛼𝑗ℎ𝑗 , ℎ𝑗 , ℎ𝑘 ∝ 1 − 𝛿𝑗𝑘

No general recipe to find gates implementing 𝑒−𝑖𝐻𝑡. Would be easier if we considered 𝑒−𝑖𝛼𝑗ℎ𝑗𝑡…

But, non commutativity of terms→ 𝑒−𝑖(σ𝑗 𝛼𝑗ℎ𝑗)𝑡 ≠ ς𝑗 𝑒
−𝑖𝛼𝑗ℎ𝑗𝑡

Actually, from BCH formula: 𝑒𝑡(𝐴+𝐵) = 𝑒𝑡𝐴𝑒𝑡𝐵𝑒−
𝑡2

2
[𝐴, 𝐵]𝑒

𝑡3

6
(2[𝐵, 𝐴, 𝐵 +[𝐴, 𝐴, 𝐵 ])…

We learn that approximating exp. of sum with prod of exp is associated to an error 𝑂 𝑡2 as 𝑡 → 0.
Nice because we can slice time: 𝑒−𝑖𝐻𝑡 = (𝑒−𝑖𝐻𝑡/𝑛𝑇)𝑛𝑇 !
If 𝑛𝑇 is big enough w.r.t 𝑡, we can approximate 𝑒−𝑖𝐻𝑡 with the Lie-Trotter-Suzuki expansion (trotterization):

𝑒−𝑖𝐻𝑡 ≈ (ෑ

𝑗

𝑒
−𝑖𝛼𝑗ℎ𝑗

𝑡
𝑛𝑇)𝑛𝑇

Trotterization
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Lie-Trotter-Suzuki expansion (trotterization): 𝑒−𝑖𝐻𝑡 ≈ (ς𝑗 𝑒
−𝑖𝛼𝑗ℎ𝑗

𝑡

𝑛𝑇)𝑛𝑇

Trotterization circuit

Electronic structure hamiltonians exhibit k-locality: terms of Hamiltonian act on at most k qubits. This can 
be shown to imply that the gate count of trotterized evolution is not exponential in the number of qubits.

I haven’t unpacked further what’s in the boxes, but…

Still, very large gate count. Linear scaling with 𝑡 unavoidable in general (no fast-forwarding theorem).



OK, now you know all the ingredients to compute the impurity model’s Green’s function with a 
quantum computer! 

36

Ground state Time-evolution operator

H H

U(t)𝜎𝑙 𝜎𝑘|𝜓0⟩

|0⟩

Y/Z

VQE trotterization

But those are very noisy as for now…



VI. Hardware noise
How do imperfections of 
the device impact the 
results? How to model 
noise?
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noise-free setting

increasing noise levels

VQE optimization step

𝐸(𝜽)

𝐸𝐺𝑆

𝑇𝑟 𝜌𝐶𝑀𝑆𝐻 =
𝑐𝑠𝑡

2𝑛
Systematic bias
appears as noise 
increases. 

Worst case: measure
noise (get completely
mixed state whichever
the parametrization).

Effect of noise on VQE optimization of deep circuits



VI.1. Noise sources

39

- Idle noise (𝑇1, 𝑇2) : relaxation 1 → 0 , pure dephasing 0 + 1 → 0 + 𝑒𝑖𝜙 1
- gates imperfections from imperfect control over tunable fields: represented as, eg, 

depolarizing noise (a Pauli gate randomly applies after the gate)
- Readout error: relaxation may occur during error as 𝑡𝑚𝑒𝑎𝑠 ≫ 𝑡𝑠, 𝑡𝑑



VI.2. Modelization: example of the depolarizing model

40

Noise: 𝜓 → 𝜌 = σ𝑗 𝑝𝑗|𝜓𝑗⟩⟨𝜓𝑗| (statistical mixture)

Model gate imperfections by adding Pauli operation/word at random after perfect gate applies

Noisy process is in all generality modelled through a quantum channel:

ԑ must be CPTP (Completely-Positive, Trace-Preserving) to be physical: → Kraus operators decomposition

ԑ 𝜌 = σ𝑘𝐸𝑘 𝜌𝐸𝑘
†, σ𝑘 𝐸𝑘

† 𝐸𝑘 = 𝐼.

Formalism encompasses unitary (=noise-free) evolution: ԑ 𝜌 = 𝑈𝜌𝑈†



VI.2. Modelization: example of the depolarizing model

41

Noise: 𝜓 → 𝜌 = σ𝑗 𝑝𝑗|𝜓𝑗⟩⟨𝜓𝑗| (statistical mixture)

« Model gate imperfections by adding Pauli operation/word at random after perfect gate applies »

→ Single-qubit depolarizing channel reads: ԑdepol 𝜌 = 1 − 𝑝 𝜌 +
1

3
𝑝(𝑋𝜌𝑋 + 𝑌𝜌𝑌 + 𝑍𝜌𝑍)

Two-qubit counterpart obtained as tensor product of such channels (but with higher value of depol.prob p!)

=



VI.3. Error mitigation
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Examples of learning techniques to mitigate effect of gate noise on measured expectation value:

      

 

 
 
  
 
  
  
 
 
 
 
  
 
 
  
 

    

       

            
      

 

            

      

Zero-Noise Extrapolation: [Kandala, 2019]
Artificially inflate noise by duplicating noisy gates
without changing logical function of circuit.

Clifford Data Regression: [Czarnik, 2021]
Train ansatz to associate measured observable to noisy counterpart
by simulating resp. computing exactly the pair on training set of easy
circuits similar to the target circuit.



To wrap up…

• DMFT with a QC: compute GF of impurity model with QC

• Ground state preparation: variational method (VQE). Can 
be extended to reach excited states. Methods constructing
the circuit on-the-fly were developed.

• Optimization still a classical task, benefitting from ML 
experience.

• Time-evolution: trotterization algorithm. Very deep circuits.

• Noise has a strong impact of the observables’ measured
expectation values. 

• Effect of gate imperfections can be mitigated, also
borrowing techniques from ML

• Very active field!
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Thank you for your 
attention!

Any questions?
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Ad: upcoming lectures @Collège de France

Recordings (FR) and slides (ENG) will be put on CDF’s website.
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