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Ludovic Goudenège Machine learning from scratch



Machine learning from scratch

Introduction

Introduction
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Phase-field equation1

1Figures from L. Goudenège’s PhD Thesis
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Phase-field equation2

Jump from one meta-stable well to ground state.

2Figures from L. Goudenège’s PhD Thesis
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Convergence of random sampling

The starting point

SM =
1

M

M∑
m=1

Xm

where Xm = f (Zm) with f : Z 7→ Rd .

Theorem (Law of large numbers)

If E[|X1|] < +∞, with probability 1,

lim
M→+∞

SM = E[X1]

But what about the speed of convergence ?
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Speed of convergence

The convergence rate is in 1/
√
M.

Therefore, for any ε > 0, with probability 1− ε, we have

|SM − E[X1]| ≤
√

Var(X1)/(εM)

Take-home message (First)

The convergence rate of random estimators rate is linearly
increasing with standard deviation, square-root decreasing with
respect to probability and number of sampling.
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Central Limit Theorem

We can ask the following question, is there something special in
the following quantity?

√
M

(
SM − E[X1])√

Var(X1)

)

This does not seem bounded with probability 1.

Recall first take-home message: inversely proportional to the
(square-root) of probability.

It is centered and normalized.
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Central Limit Theorem

Theorem (Central Limit Theorem)
√
M

(
SM−E[X1])√

Var(X1)

)
converges in distribution to a normal law.

It is a universal theorem: it says that the limit does not depend on
the law of randomness.

It says also that the limit is ”a priori not” a random
variable coming from the data.

It is a (misunderstood) fundamental theorem!

Take-home message (Second)

Do not trust Wikipedia or ChatGPT (especially in maths).
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Central Limit Theorem
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Central Limit Theorem

What’s the truth?

The convergence rate is in 1/
√
M is “independent” of the

dimension d .

The errors are random, and only characterized
(asymptotically) by σ2 = Var [X1] (which is unknown) or
Cov(X1) in dimension d .

The statistical error is larger when the variance/covariance
matrix is large.

The statistical properties (i.e. the law) of the estimator are
closed to the properties of a/all/some random variable with
normal law.
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Monte-Carlo estimations3

On the left, Monte-Carlo computations of E[eG/10] ' 1.005
On the right, Monte-Carlo computations of E[e2G ] ' 7.389

3Figures from E. Gobet’s lectures
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Monte-Carlo estimations4

One realization of the empirical mean and the corresponding 95%
confidence interval.

4Figures from E. Gobet’s lectures
Ludovic Goudenège Machine learning from scratch



Machine learning from scratch

Introduction

Size of Confidence Interval

If we only use the law of large number, the confidence interval are
of size O(1/

√
εM).

This is much better with Central Limit Theorem, but this is only
asymptotic.

P(SM − E[X1] ∈ CIM) ' 1− ε

with CIM =
√

Var(X1)/M[±Normal Statistic].

The “Normal Statistic” is the size of the tail of a normal law, so
typically

√
log(1/ε).

Take-home message (Third)

The Central Limit Theorem gives ”asymptotic statistical bounds”
for the exact value, not for SM .
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Bias in substitution method

Suppose that you want to compute φ(E[X1]) for some function φ.

Since SM converges almost surely to E[X1] we expect
φ(SM) ' φ(E[X1]).

But the first problem is that there is bias!

E[φ(SM)] 6= φ(E[X1]).

However, we can quantify the bias in the substitution method

E[φ(SM)]− φ(E[X1]) =
c1

M
+

c2

M2
+ o(M−2)

if φ is in C4
b , and X1 satisfies some moment conditions.

Remark

If φ is convex (respectively concave), the substitution method gives
an overestimation (respectively underestimation) of f (E[X1]).
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Curse of dimensionality

You have to understand that stochastic optimization in a high
dimensional space is a difficult problem for a very simple reason.
Assume that you have a very large number M of realizations of
uniform random variables in a cube [0, 1]d , say X1, . . . ,XM .

Could you expect that the next random number XM+1 is close to
the others ? Let’s define

D(d ,M) = E
[

min
m=1,...,M

|XM+1 − XM |∞
]

which is the expected distance to the nearest neighbors.

Take-home message (Fourth)

In dimension 21 (7 atoms with 3 coordinates), with
M = 100.000.000, then D(21, 108) ' 20%.
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Curse of dimensionality

An approximated formula gives

D(d ,M) ≥ d

2(d + 1)

1

M
1
d
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Meta-stable dynamics in small dimension
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Stochastic optimization

You want to minimize over θ ∈ Θ ⊂ Rp the function
Φ(θ) = E[φ(X1, θ)]. You certainly have a Monte-Carlo
approximation

Φ̂(θ) =
1

M

M∑
m=1

φ(Xm, θ)

The aim is to find a bound on the error

|argminθ∈ΘΦ(θ)− argminθ∈ΘΦ̂(θ)|

as a function of the number of sampling size M.

Again, you cannot hope better than a bound c√
M

. For instance

Φ(θ) = λ‖θ‖2+E[|Y−XT θ|] and Φ̂(θ) = λ‖θ‖2+
1

M

M∑
m=1

|Ym−XT
m θ|.

Ludovic Goudenège Machine learning from scratch



Machine learning from scratch

The problems

Regression

Assume the space of regression functions is of dimension K .
Ψ := Vect(ψ1, . . . , ψK ). Define

MM := argminψ∈Ψ
1

M

M∑
m=1

|Om − ψ(Im)|2

then the Mean Square Error satisfies

MSE = E[|MM −M|2µM ] ≤ inf
ψ∈Ψ
|ψ −M|2µ +

K

M
sup
i∈Rd

Var(O|I = i)

Take-home message (Fifth)

There is always two parts in a MSE. First one is about “structure”,
the second is a “Variance” term.
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Kernel regression

Make the link with the talk of Arthur France-Lanord.
You want to approximate

s(ξ) =

∑K
i=1 θi K (ξ, ξi )∑

K (ξ, ξi )

with
θ̂ = argmin ‖y − Kθ‖2 + λθTKθ.
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Kernels

Exponential covariance function versus Gaussian covariance
function

K (x , y) = exp−
|x−y|
` K (x , y) = exp−

|x−y|2

2`2

Interaction length : ` > 0.
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Maximum likelihood estimation
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Maximum likelihood estimation

Consider a family µθ of distributions with density (easy to sample
for any θ).

You have many observations sampled from the unknown
distribution µ∗.

Ideally, you want to minimize a distance or divergence (typically
Kullback-Leibler)

KL(µ∗||µθ) = −
∫

log

(
dµθ
dµ∗

)
dµ∗
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Maximum likelihood estimation

If µ∗ has also a density with respect to Lebesgue measure, this is
equivalent to maximize

θ 7→
∫

log

(
dµθ
dLeb

)
dµ∗.

A classical approach is to replace the integral by an empirical one

θ 7→
M∑

m=1

log(pθ(Xm)).
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Density estimation

First solution
µθ = (Tθ)#ν0

where ν0 is a reference probability with density q0, and Tθ is a C1

diffeomorphism.

In that case, we have

pθ(x) = q0(T−1
θ (x))Jacx [T−1

θ ](x)

Example: Tθ(x) = m + Σx with θ = (m,Σ).

Approximating the function p(x) is called the density estimation
problem.

Ludovic Goudenège Machine learning from scratch



Machine learning from scratch

Maximum likelihood estimation

Stochastic gradient descent

But, how to optimize?

Stochastic gradient descent:

θ(n+1) = θ(n) − γ(n+1)
∑

Xm∈B(n+1)

∇θ log pθ(Xm)

where

B(n+1) is a sequence of random batch of data points,

γ(n+1) is a sequence of stepsizes/learning rates.
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In the past...

People thought it was hard to solve the following problem:

Find {Tθ : θ ∈ Θ}

such that

θ 7→
M∑

m=1

log(pθ(Xm))

is easy to optimize.

Today we know that such construction are possible using neural
networks, but this is not the only ones.
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Maximum likelihood estimation

Gaussian Mixture Models

Gaussian Mixture Models
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Gaussian Mixture Models

Gaussian Mixture Models

Latent variable models :
We consider that the data (Xm)Mm=1 are i.i.d. from

C ∼ Cate(ω1, . . . , ωK ), with
K∑

k=1

ωk = 1

X |C ∼ N (mC ,ΣC )

with m1, . . . ,mK ∈ Rd and Σ1, . . . ,ΣK are squared positive
definite matrix.

Here the parameters are θ = {ωk ,mk ,Σk}Kk=1.
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Gaussian Mixture Models

Likelihood

The likelihood for one observation is then the marginal

pθ(Xm) =
K∑

k=1

pθ(Xm, k) =
K∑

k=1

pθ(Xm|k)pθ(k)

=
K∑

k=1

ωkφ(Xm|mk ,Σk)

where φ(Xm|mk ,Σk) is th density of N (mk ,Σk).

The complete log-likelihood is

1

M

M∑
m=1

log(pθ(Xm)) =
1

M

M∑
m=1

log

(
K∑

k=1

ωkφ(Xm|mk ,Σk)

)
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Gaussian Mixture Models

Expectation-Maximization algorithm

By Jensen inequality, for any observation Xm, and θ, θ′

log(pθ(Xm)) = log

(
K∑

k=1

pθ(Xm, z)

)

≥
K∑

k=1

pθ′(k |Xm) log

(
pθ(Xm, k)

pθ′(k |Xm)

)
.

This suggests a fixed-point algorithm. Given θ(n) at step n

E step: Compute ψ(n)(θ) =
∑K

k=1 pθ(n)(k|xm) log
(

pθ(Xm,k)
p
θ(n) (k|Xm)

)
.

M step: Maximize ψ(n)(θ) and define θ(n+1) = argmaxθψ
(n)(θ).
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Gaussian Mixture Models

In a Gaussian Mixture Model, these two steps are fully explicit.
The likelihood for one observation is

L(θ;Xm) = pθ(Xm) =
K∑

k=1

ωkφ(Xm|mk ,Σk),

and the complete log-likelihood of the model is

log L(θ; x , k) = log

(
M∏

m=1

K∑
k=1

ωkφ(Xm|mk ,Σk)

)

=
M∑

m=1

log

(
K∑

k=1

ωkφ(Xm|mk ,Σk)

)
.
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Gaussian Mixture Models

- In the E-step, we have to compute

ψ(n)(θ) =
M∑

m=1

K∑
k=1

pθ(n)(k|Xm) log
pθ(Xm, k)

pθ(n)(k|Xm)

- In the M-step, we have to maximize ψ(n) over θ.

Take-home message (Sixth)

You can write the code to apply EM algorithm on a Gaussian
Mixture Model.
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Gaussian Mixture Models

Thanks to the form of the function ψ(n), the resulting expressions
for the new parameters are

ω
(n+1)
k =

1

M

M∑
m=1

ω
(n)
k φ(Xm|m(n)

k ,Σ
(n)
k )

Zm
,

m
(n+1)
k =

1

Mω
(n+1)
k

M∑
m=1

ω
(n)
k φ(Xm|m(n)

k ,Σ
(n)
k )Xi

Zm
,

and

Σ
(n+1)
k =

M∑
m=1

ω
(n)
k φ(Xm|m(n)

k ,Σ
(n)
k )(Xm −m

(n+1)
k )(Xm −m

(n+1)
k )T

Mω
(n+1)
k Zm

,

where

Zm =
K∑

k=1

ω
(n)
k φ(Xm|m(n)

k ,Σ
(n)
k ).
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Maximum likelihood estimation

Neural networks

Neural networks
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Maximum likelihood estimation

Neural networks

Neural networks

A Neural Network Tθ is a composition of L transformations
(T `)`=1,...,L

Tθ = T L ◦ · · · ◦ T 1,

where, for each `, T ` : Rd` → Rd`+1
is given by

T `(x) = σ`
(
W `x + b`

)
.

The matrices W ` ∈ Rd`+1×d` are called the network weights, the
vectors b` ∈ Rd`+1

the network biases.

The activation function σ` acts componentwise,

σ`(a) = (σ`(a1), . . . , σl(ad`+1)).
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Neural networks

Neural networks

We will construct a Neural Network Tθ(x) and then, given some
synthetic data (Xm,Ym)m=1,...,M , solve the fitting (or training)
problem

min
θ

RM(θ) where RM(θ) =
1

M

M∑
m=1

(Ym − Tθ(Xm))2

applying a gradient descent algorithm

θ(n+1) = θ(n) − γ(n+1) 1∣∣B(n+1)
∣∣ ∑
m∈B(n+1)

∇θ (Ym − Tθ(n)(Xm))2

with step (or ”learning rate”) γ, where (B(n))n is a sequence of
batches.
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Neural networks

Back propagation

This procedure will require to implement the computation of the
gradient ∇θT (Xm), which can be done by backpropagation
through the network.
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Neural networks

Proof of the theorem of Hornick, Cybenko et al.

Theorem (Universal approximation theorems)

“Any reasonable function f can be approximated with an arbitrary
accuracy by a neural network with some number of hidden layers
and for some activation function σ”.

Gallant, White - 1988: f is square integrable on [0, 2π]d , and
the activation function is the cosine squasher

Cybenko - 1989: uniform convergence for any continuous
function on a compact set, σ is the general sigmoid squasher

Hornik - 1990: the same but assuming that σ is continuous,
bounded and non-constant. Does not include the ReLU case.

Pinkus - 1993: similar result, for any activation function σ
that is not a polynomial. Includes the ReLU case.
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Neural networks

Proof of the theorem of Hornick, Cybenko et al.

Is it a primitive function ?

f (x) =

∫ x

−∞
f ′(y)dy =

∫
R
H(x − y)f ′(y)dy

Can we approximated the Heaviside function H at point (x − y)?∫
R
H(x − y)f ′(y)dy '

J∑
j=−J

σ

(
x

ε
− j∆x

ε

)
f ′(j∆x)

f (x) '
J∑

j=−J
ωjσ(ajx + bj).

Take-home message (Seventh and last one)

You know how to prove an easy version of the Universal
Approximation Theorem.
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Maximum likelihood estimation

Neural networks

Thanks for your attention.

Do not forget the take-home messages.
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Maximum likelihood estimation

Neural networks

Cours d’Emmanuel Gobet. Méthodes de Monte-Carlo.
Polytechnique.

Cours d’Alain Durmus. Méthodes de Monte-Carlo.
Polytechnique.

Communications with Tony Lelièvre.

Ludovic Goudenège Machine learning from scratch


	Introduction
	The problems
	Maximum likelihood estimation
	Gaussian Mixture Models
	Neural networks


