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Phase-field equation®
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Figures from L. Gouden&ge’s PhD Thesis
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Phase-field equation?

M'MMWJ Wik M

Jump from one meta-stable well to ground state.

2Figures from L. Goudengge's PhD Thesis
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Convergence of random sampling

The starting point

1 M
Sm=— Xm
w
where X, = f(Z,,) with f : Z +— R¢.

Theorem (Law of large numbers)

IFE[|X1]] < 400, with probability 1,

lim SM = E[Xl]

M—+oc0

But what about the speed of convergence ?
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Speed of convergence

The convergence rate is in 1/v M.
Therefore, for any € > 0, with probability 1 — &, we have

Sm — E[X1]| < v/ Var(X1)/(eM)

Take-home message (First)

The convergence rate of random estimators rate is linearly
increasing with standard deviation, square-root decreasing with
respect to probability and number of sampling.
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Central Limit Theorem

We can ask the following question, is there something special in
the following quantity?

S <5M - IE[Xl]))
Var(Xl)

This does not seem bounded with probability 1.

Recall first take-home message: inversely proportional to the
(square-root) of probability.

It is centered and normalized.
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Central Limit Theorem

Theorem (Central Limit Theorem)

v M <M> converges in distribution to a normal law.
Var(X1)

It is a universal theorem: it says that the limit does not depend on
the law of randomness.

It says also that the limit is "a priori not” a random “ﬁ:‘

variable coming from the data. (N2
D)

It is a (misunderstood) fundamental theorem!

Take-home message (Second)

Do not trust Wikipedia or ChatGPT (especially in maths).
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Central Limit Theorem

E What's the central limit theorem?

The central limit theorem is a probability theorem that states that the sum of independent
and identically distributed random variables tends towards a normal distribution as the
number of variables tends towards infinity. Specifically, the theorem states that the mean of

these variables anormal

f the underlying distribution of
the original variables. The central limit theorem has many important applications in fields

such as statistics, physics, and finance, and is considered one of the most fundamental

results in probability theory.
Théoréme central limite

Atticle  Discussion

o€ Pourles articles homonymes, voir TCL.

Le théoréme central limite (aussi appelé théoréme limite central, théoréme
de lalimite centrale ou théoréme de la limite centrée) établitla
convergence en loi de la somme d'une suite de variables aléatoires vers Ia loi
normale. Intuitivement, ce résultat affirme qu'une somme de variables
aléatoires indépendantes et identiquement distribuées tend (ie plus souvent)
vers une variable aléatoire gaussienne.

Ce théoreme et f

t une explication de
de Ia loi normale dans la nature : de nombreux phénoménes sont dus &
I'addition d'un grand nombre de petites perturbations aléatoires.
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Central Limit Theorem

What's the truth?

m The convergence rate is in 1/v/M is “independent” of the
dimension d.

m The errors are random, and only characterized
(asymptotically) by 02 = Var[X1] (which is unknown) or
Cov(X1) in dimension d.

m The statistical error is larger when the variance/covariance
matrix is large.

m The statistical properties (i.e. the law) of the estimator are
closed to the properties of a/all/some random variable with
normal law.
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Monte-Carlo estimations

\\

-

On the left, Monte-Carlo computations of E[e®/10] ~ 1.005
On the right, Monte-Carlo computations of E[e?¢] ~ 7.389

3Figures from E. Gobet's lectures
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Monte-Carlo estimations®

One realization of the empirical mean and the corresponding 95%
confidence interval.

*Figures from E. Gobet's lectures
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Size of Confidence Interval

If we only use the law of large number, the confidence interval are

of size O(1/VeM).

This is much better with Central Limit Theorem, but this is only
asymptotic.
]P)(SM — E[Xl] S C/M) ~1—¢

with Clyy = /Var(X1)/M[£Normal Statistic].

The “Normal Statistic” is the size of the tail of a normal law, so
typically /log(1/¢).

Take-home message (Third)

The Central Limit Theorem gives "asymptotic statistical bounds”
for the exact value, not for Sy.
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Bias in substitution method

Suppose that you want to compute ¢(E[X;]) for some function ¢.
Since Sy converges almost surely to E[X7] we expect
P(Sm) = ¢(E[X1]).
But the first problem is that there is bias!
E[¢(Sm)] # ¢(E[X]).

However, we can quantify the bias in the substitution method

E[¢(Sm)] - $(E[X1]) = 5 + 1355 +o(M?)

if ¢ is in C}, and X satisfies some moment conditions.

RENEILS

If ¢ is convex (respectively concave), the substitution method gives
an overestimation (respectively underestimation) of f(E[X1]).
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Curse of dimensionality

You have to understand that stochastic optimization in a high
dimensional space is a difficult problem for a very simple reason.
Assume that you have a very large number M of realizations of
uniform random variables in a cube [0,1]9, say Xi, ..., Xu.

Could you expect that the next random number Xy, is close to
the others ? Let's define

D M) =B | min | [Xiris — Xl

which is the expected distance to the nearest neighbors.

Take-home message (Fourth)

In dimension 21 (7 atoms with 3 coordinates), with
M = 100.000.000, then D(21,108) ~ 20%.
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Curse of dimensionality

I dWM | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000
1| 0,002 | 0,000 | 0,000 | 0,000 0,000 0,000 0,000
4 | 0,081 | 0,038 | 0,017 | 0,008 0,004 0,002 0,001
5 | 0,166 | 0,105 | 0,066 | 0,042 0,026 0,017 0,010
10 | 0,287 | 0,228 | 0,181 | 0,144 0,114 0,091 0,072
15 | 0,345 | 0,296 | 0,254 | 0,218 0,187 0,160 0,137
20 | 0,378 | 0,337 | 0,300 | 0,268 0,239 0,213 0,190

An approximated formula gives

d 1
DMy > 2 1
( )_2(d+1)M§
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Meta-stable dynamics in small dimension
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Stochastic optimization

You want to minimize over § € © C RP the function
®(0) = E[¢p(X1,0)]. You certainly have a Monte-Carlo
approximation

®(h) = W Z (Xm, )
The aim is to find a bound on the error
Jargmingo®(f) — argming.o®(6)|
as a function of the number of sampling size M.

Again, you cannot hope better than a bound \/LM For instance

®(0) = M||0]|P+E[| Y =X T8]] and &(0) = A||0]]*+— Z Ym—XT40].
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Regression

Assume the space of regression functions is of dimension K.
V= Vect(y1,...,%k). Define

M
) 1
My = argminycy s Z O™ — ap(I™)]?
m=1
then the Mean Square Error satisfies

K
MSE = E[[ My — M5, < inf o~ MI; + sup Var(O|l = i)

Take-home message (Fifth)

There is always two parts in a MSE. First one is about “structure”,
the second is a “Variance” term.
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Kernel regression

Make the link with the talk of Arthur France-Lanord.
You want to approximate

SR, 0 K &)
> K(& &)

s(§) =

with
§ = argmin ||y — KO||> + \0T K.
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Kernels

Exponential covariance function versus Gaussian covariance
function

_x=yl?

K(x,y) =exp 22

Interaction length : ¢ > 0.
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Maximum likelihood estimation
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Maximum likelihood estimation

Consider a family pg of distributions with density (easy to sample
for any 0).

You have many observations sampled from the unknown
distribution p*.

Ideally, you want to minimize a distance or divergence (typically
Kullback-Leibler)

dpe
KL(p* =— /1 *
(il =~ [ 1o (51 o
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Maximum likelihood estimation

If ©* has also a density with respect to Lebesgue measure, this is
equivalent to maximize

9»—>/Iog(dL b) du*.

A classical approach is to replace the integral by an empirical one

M
01— log(ps(Xm
m=1
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Density estimation

First solution
po = (To)4vo

where g is a reference probability with density qo, and Ty is a C!
diffeomorphism.

In that case, we have
po(x) = qo( Ty *(x))Jack[ Ty (%)

Example: Ty(x) = m+ Xx with § = (m, X).

Approximating the function p(x) is called the density estimation
problem.
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Stochastic gradient descent

But, how to optimize?
Stochastic gradient descent:
9(n+1) — 9(n) . ,Y(n+1) Z ve |Og P0 X )
Xm EB (n+1)

where
m B("t1) s 3 sequence of random batch of data points,

| ’y(”+1) is a sequence of stepsizes/learning rates.
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In the past...

People thought it was hard to solve the following problem:
Find {Ty: 0 € ©}
such that

M
0 — Y log(ps(Xm))
m=1

is easy to optimize.

Today we know that such construction are possible using neural
networks, but this is not the only ones.
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LGaussian Mixture Models

Gaussian Mixture Models
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Gaussian Mixture Models

Latent variable models :
We consider that the data (X,,)M_, are i.i.d. from

m=1

K
C~ Cate(wl,...,wK), with Zwk =1
k=1

X’CNN(mc,Zc)

with m1,...,mx € R? and X1, ..., ¥ are squared positive
definite matrix.

Here the parameters are 6 = {wy, my, Zk}szl.
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Likelihood

The likelihood for one observation is then the marginal
K
po(Xm) = > po(Xm, k) ZPQ(X |K)po (k)
k=1

K
= ) wkd(Xom| M, i)
k=1

where ¢(Xin|mk, Xk) is th density of N(my, Lx).
The complete log-likelihood is

M K
Z log(pg(Xim) Z <Z wie(Xm|mi, Zk))

m=1 k=1
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Expectation-Maximization algorithm

By Jensen inequality, for any observation X,,,, and 6, ¢’

K
log(po(Xm)) = log (Zpe(Xm,Z)>

Xm, k

k=1

AV

This suggests a fixed-point algorithm. Given 6(") at step n
n K Xm,k
E step: Compute (" (0) = 3,1 pyen) (k|xm) log <%>.
M step: Maximize (") (0) and define #("*1) = argmax,)(" ().
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L Gaussian Mixture Models

In a Gaussian Mixture Model, these two steps are fully explicit.
The likelihood for one observation is

L(0; Xm) = po(X ZWW(X M, Zk),
k=1

and the complete log-likelihood of the model is

M K
log L(0; x, k) =log | [ D wid(Xmlmi, L)
m=1 k=1
K

I
M=
8

™
£
=
D
3
™
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L Gaussian Mixture Models

- In the E-step, we have to compute

M K PQ(X k)
(">9:§j§j (k| X)) log L222m 2)
v () m:1k:1p0()( | m) gpo(")(kp(m)

- In the M-step, we have to maximize (") over 6.

Take-home message (Sixth)

You can write the code to apply EM algorithm on a Gaussian
Mixture Model.
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L Gaussian Mixture Models

Thanks to the form of the function ("), the resulting expressions
for the new parameters are

o _ ﬁﬂ: 6% | () ()
M n n
m(n+1 Z ( )(b ’ Z( ))
k Mw (”+1) ’
and
M n n n n n
() _ g A 00nlm ) O — )0 = )T
: m=1 Mwl(<n+1)zm ’
where

K
Zn =3 "X m{", =),

k=1
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L Neural networks

Neural networks

Hidden
Input

Output
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L Neural networks

Neural networks

A Neural Network Ty is a composition of L transformations

(T9e=1,..1
Tp=Tlo- . 0T!

where, for each ¢, T : R — RI s given by
T(x) =o' (Wi +b).

The matrices W’ e RI“*xd" 3re called the network weights, the
0+1 .
vectors b’ € R4 the network biases.

The activation function of acts componentwise,

o'(a) = (cX(ay),. .., o' (agenr)).
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L Neural networks

Neural networks

We will construct a Neural Network Ty(x) and then, given some

synthetic data (X, Ym)m=1,...m, solve the fitting (or training)
problem
M
: _ 2
min Rm(6) where Z To(Xm))

m=1

applying a gradient descent algorithm
9(n+1) — 9(") _ 7(n+1) n+1)‘ Z VG Tg(n) (Xm))2
meB(n+1)

with step (or "learning rate”) v, where (B("),, is a sequence of
batches.
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L Neural networks

Back propagation

This procedure will require to implement the computation of the
gradient Vo T(X,,), which can be done by backpropagation
through the network.
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L Neural networks

Proof of the theorem of Hornick, Cybenko et al.

Theorem (Universal approximation theorems)

"Any reasonable function f can be approximated with an arbitrary
accuracy by a neural network with some number of hidden layers
and for some activation function o”.

m Gallant, White - 1988: f is square integrable on [0, 27]9, and
the activation function is the cosine squasher

m Cybenko - 1989: uniform convergence for any continuous
function on a compact set, o is the general sigmoid squasher

m Hornik - 1990: the same but assuming that ¢ is continuous,
bounded and non-constant. Does not include the ReLU case.

m Pinkus - 1993: similar result, for any activation function o
that is not a polynomial. Includes the RelLU case.

Ludovic Goudenége Machine learning from scratch



Machine learning from scratch
L Maximum likelihood estimation

L Neural networks

Proof of the theorem of Hornick, Cybenko et al.

Is it a primitive function ?

(0= [ Fdy= [ Hx-nf)d

—00 R
Can we approximated the Heaviside function H at point (x — y)?
J
| Ax
H(x — y)f' ~ XX friax
[ =y = 3 o (X 25) rax
Jj=—J
J

Z o(ajx + bj).

Take-home message (Seventh and last one)

You know how to prove an easy version of the Universal
Approximation Theorem.
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L Neural networks

Thanks for your attention.

Do not forget the take-home messages.
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L Neural networks

[ Cours d’Emmanuel Gobet. Méthodes de Monte-Carlo.
Polytechnique.

[ Cours d’Alain Durmus. Méthodes de Monte-Carlo.
Polytechnique.

[ Communications with Tony Leligvre.

dovic Goudenége Machine learning fi



	Introduction
	The problems
	Maximum likelihood estimation
	Gaussian Mixture Models
	Neural networks


