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Introduction
Ab Initio Molecular Dynamics (AIMD)

To compute finite temperature properties -> often we need to compute 
averages of thermalized configurations 

 Workhorse is Ab Initio Molecular Dynamics : iterative algorithm to 
integrate Newton’s equation of motion (often modified with a thermostat)

2

Huge drawback : very high computational 
cost -> needs thousands of configurations  
to be computed with DFT



Variational inference
Sampling using a surrogate distribution

Kullback-Leibler divergence 

 

  

The lower , the closer  and  are 

We want to find the  that minimize 

DKL(p∥qγ) = ∫ dR ln( qγ(R)
p(R )qγ(R) ≥ 0

DKL(p∥qγ) p(R) qγ(R)

qγ(R) DKL(p∥qγ)
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True distribution 

p(R)

Surrogate distribution 

qγ(R)
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True distribution 

p(R) =
1
Z

e−βV(R)

Surrogate distribution 

qγ(R) =
1
Z̃

e−β Ṽ (R)
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Gibbs-Bogoliubov inequality 

  


We want to find the  that minimize 

ℱ̃ = ℱγ+⟨V(R)− Ṽ (R)⟩ ≥ ℱ

Ṽ (R) ℱ̃

True distribution 

p(R) =
1
Z

e−βV(R)

Surrogate distribution 

qγ(R) =
1
Z̃

e−β Ṽ (R)



Self-consistent harmonic approximation 

            
Ṽ (R) =
1
2

uΦu qγ(R) = e−β 1
2 uΦu

ℱ̃ = ℱγ+⟨V(R)− Ṽ (R)⟩

To be minimized self-consistently

Variational inference
Similar approach in condensed matter physics
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DFT

ConfigurationsEffective 
phonons

SSCHA : L. Monacelli et al 2021 J. Phys.: Condens. Matter 33 363001 (2021) 

sTDEP : N. Shulumba et al Phys. Rev. B 95, 014302 (2017) 

QSCAILD : A. van Roekeghem et al Comput. Phys. Commun. 263 107945 (2021) 
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Variational inference
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Shape of the 
distribution is limited to 

gaussians



Machine-Learning Assisted Canonical Sampling
Using Machine-Learning potential for variational inference

8

Linear MLIP 

            
Ṽ (R) = ∑
i

∑
k

γk D̃ k,i(R) qγ(R) = e−β Ṽ (R)

ℱ̃ = ℱγ+⟨V(R)− Ṽ (R)⟩

To be minimized

Or equivalently, minimize 
 DKL(p∥qγ)



Machine-Learning Assisted Canonical Sampling
How to minimize the effective free energy ?

Gibbs-Bogoliubov free energy 

 

We minimize this quantity with respect to the MLIP coefficients 

ℱ̃ = ℱγ+⟨V(R)− Ṽ (R)⟩

γ
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For linear MLIP 

Self-consistent ordinary least-
squares



Machine-Learning Assisted Canonical Sampling
Algorithm
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N configurationsDensity Functional 
Theory

Weights & Properties 
Computation

Machine-Learning 
Molecular Dynamics

Machine-Learning 
Interatomic Potential 

Training

MLACS

Temperature dependent properties

Convergence

Start here

• Small number of DFT 
calculations needed 

• DFT calculations can 
be done in parallel



Machine-Learning Assisted Canonical Sampling
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N configurationsDensity Functional 
Theory

Weights & Properties 
Computation

Machine-Learning 
Molecular Dynamics

Machine-Learning 
Interatomic Potential 

Training

MLACS

Temperature dependent properties

Convergence

Start here

• Results are the configurations 

• Properties are computed with DFT observables 

• The MLIP is a tool to create the configurations, 
but can still be used to obtain properties/
statistics (but with low transferability)



Results

To check the accuracy of the method we will compute finite temperature phonons 

TDEP 

Φij = − ⟨uiuj⟩−1⟨uiFj⟩
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Ωλ(T)O. Hellman et al Phys. Rev. B 84, 180301 (2011) Average on thermalized configurations

For the following examples, we will use the SNAP potential as a MLIP: 

SO(4) descriptor with linear functional
A.P. Thompson et al J. Comput. Phys. 285, 316 (2015)



AlCu
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Zirconium 1000K 

• AIMD 8000 configurations 

• MLACS 160 configurations

Silicium 900K 

• AIMD 4000 configurations 

• MLACS 40 configurations

Results - Finite temperature phonons



Results - Finite temperature phonons
AlCu
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Uranium (MEAM) 2500K 

• AIMD 15000 configurations 

• MLACS 120 configurations

Uranium 1200K 

• AIMD 6000 configurations 

• MLACS 120 configurations



Some results - Free energy

15

Free energy reference system 

(Einstein crystal, LJ)

Free energy MLIP

Free energy of the real potential

Thermodynamic integration

Thermodynamic perturbation

No new DFT computation

 necessary !

         [eV/at]           [eV/at]         [meV/at]

Silicon 
T=1500K -5.0845 -5.0843 -0.2

T=600K -3.7076 -3.7073 -0.3

U liquide 
T=2500K -7.4786 -7.4790 0.4

Al0.5Cu0.5

ℱ̃ ℱ Δℱ



Conclusion
Machine-Learning Assisted Canonical Sampling

• Variational inference method based on machine-learning potential 

• DFT accuracy with a fraction of the cost of AIMD 

• Can be extended to other ensembles (multi-thermal, path-integral,…) 

Thank you for your attention !
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