Ab Initio Canonical Sampling based on Variational Inference

Aloïs Castellano Nanomat - Université de Liège

François Bottin CEA DAM/DIF, Bruyères-le-Châtel

Johann Bouchet CEA DES/IRESNE/DEC, Cadarache

Antoine Levitt Inria, MATHERIALS, Ecole des Ponts ParisTech

Gabriel Stoltz Inria, CERMICS, Ecole des Ponts ParisTech

GDR IAMAT 31 mai 2022

Introduction **Ab Initio Molecular Dynamics (AIMD)**

To compute finite temperature properties -> often we need to compute averages of thermalized configurations

Workhorse is Ab Initio Molecular Dynamics : iterative algorithm to

integrate Newton's equation of motion (often modified with a thermostat)

Huge drawback : very high computational cost -> needs thousands of configurations to be computed with DFT

Variational inference Sampling using a surrogate distribution

True distribution

p(R)

Kullback-Leibler divergence

$$D_{\mathrm{KL}}(p \| q_{\gamma}) = \int d\mathbf{R} \ln\left(\frac{q_{\gamma}(\mathbf{R})}{p(\mathbf{R})}\right) q_{\gamma}(\mathbf{R}) \ge 0$$

The lower $D_{\mathrm{KL}}(p \| q_{\gamma})$, the closer $p(\mathbf{R})$ and $q_{\gamma}(\mathbf{R})$ are

We want to find the $q_{\gamma}(\mathbf{R})$ that minimize $D_{\mathrm{KL}}(p \| q_{\gamma})$

3

Surrogate distribution

 $q_{\gamma}(\mathbf{R})$

Variational inference Sampling using a surrogate distribution

True distribution

$$p(\mathbf{R}) = \frac{1}{Z} e^{-\beta V(\mathbf{R})}$$

$$D_{\mathrm{KL}}(p \| q_{\gamma}) = \int d\mathbf{R} \ln\left(\frac{q_{\gamma}(\mathbf{R})}{p(\mathbf{R})}\right) q_{\gamma}(\mathbf{R}) \ge 0$$

The lower $D_{\mathrm{KL}}(p \| q_{\gamma})$, the closer $p(\mathbf{R})$ and $q_{\gamma}(\mathbf{R})$ are

We want to find the $q_{\gamma}(\mathbf{R})$ that minimize $D_{\mathrm{KL}}(p \| q_{\gamma})$

Surrogate distribution

$$q_{\gamma}(\mathbf{R}) = \frac{1}{\widetilde{Z}} e^{-\beta \widetilde{V}(\mathbf{R})}$$

Kullback-Leibler divergence

Variational inference Sampling using a surrogate distribution

True distribution

$$p(\mathbf{R}) = \frac{1}{Z} e^{-\beta V(\mathbf{R})}$$

Kullback-Leibler divergence

$$D_{\mathrm{KL}}(p \| q_{\gamma}) = \int d\mathbf{R} \ln\left(\frac{q_{\gamma}(\mathbf{R})}{p(\mathbf{R})}\right) q_{\gamma}(\mathbf{R}) \ge 0$$

The lower $D_{\mathrm{KL}}(p \| q_{\gamma})$, the closer $p(\mathbf{R})$ and $q_{\gamma}(\mathbf{R})$ are

We want to find the $q_{\rm Y}({\bf R})$ that minimize $D_{\rm KL}(p\|q_{\rm Y})$

Surrogate distribution

$$q_{\gamma}(\mathbf{R}) = \frac{1}{\widetilde{Z}} e^{-\beta \widetilde{V}(\mathbf{R})}$$

Gibbs-Bogoliubov inequality

$$\widetilde{V} = \mathscr{F}_{\gamma} + \langle V(\mathbf{R}) - \widetilde{V}(\mathbf{R}) \rangle \geq \mathscr{F}$$

We want to find the $\widetilde{V}(\mathbf{R})$ that minimize $\widetilde{\mathscr{F}}$

Variational inference Similar approach in condensed matter physics

SSCHA : L. Monacelli et al 2021 J. Phys.: Condens. Matter 33 363001 (2021) sTDEP : N. Shulumba et al Phys. Rev. B 95, 014302 (2017)

QSCAILD : A. van Roekeghem et al Comput. Phys. Commun. 263 107945 (2021)

Variational inference Similar approach in condensed matter physics

Self-consistent harmonic approximation

Shape of the distribution is limited to gaussians

Machine-Learning Assisted Canonical Sampling **Using Machine-Learning potential for variational inference**

 $\widetilde{V}(\mathbf{R}) = \sum \sum \gamma_k \widetilde{D}_{k,i}(\mathbf{R})$ i k

Linear MLIP $q_{\gamma}(\mathbf{R}) = e^{-\beta \widetilde{V}(\mathbf{R})}$

Or equivalently, minimize $D_{\mathrm{KL}}(p \| q_{\gamma})$

Machine-Learning Assisted Canonical Sampling How to minimize the effective free energy?

Self-consistent ordinary leastsquares

- **Gibbs-Bogoliubov free energy**
 - $\widetilde{\mathscr{F}} = \mathscr{F}_{\gamma} + \langle V(\mathbf{R}) \widetilde{V}(\mathbf{R}) \rangle$
- We minimize this quantity with respect to the MLIP coefficients γ

For linear MLIP

Machine-Learning Assisted Canonical Sampling Algorithm

Temperature dependent properties

 Small number of DFT calculations needed

DFT calculations can be done in parallel

Machine-Learning Assisted Canonical Sampling

Results are the configurations igodol

Properties are computed with DFT observables

 The MLIP is a tool to create the configurations, but can still be used to obtain properties/ statistics (but with low transferability)

Results

To check the accuracy of the method we will compute finite temperature phonons TDEP

O. Hellman *et al* Phys. Rev. B 84, 180301 (2011)

$\mathbf{\Phi}_{ij} = - \langle \mathbf{u}_i \mathbf{u}_j \rangle^{-1} \langle \mathbf{u}_i \mathbf{F}_j \rangle$ **Average on thermalized configurations** $\Omega_{\lambda}(T)$

For the following examples, we will use the SNAP potential as a MLIP: SO(4) descriptor with linear functional

A.P. Thompson et al J. Comput. Phys. 285, 316 (2015)

Results - Finite temperature phonons

Silicium 900K

- AIMD 4000 configurations
- MLACS 40 configurations

Zirconium 1000K

- AIMD 8000 configurations
- MLACS 160 configurations

Results - Finite temperature phonons

Uranium 1200K

- AIMD 6000 configurations
- MLACS 120 configurations

Uranium (MEAM) 2500K

- AIMD 15000 configurations
- MLACS 120 configurations

Some results - Free energy

Free energy reference system

(Einstein crystal, LJ)

Thermodynamic integration Free energy MLIP Thermodynamic perturbation Free energy of the real potential

	ℱ [eV/at]	ℱ [eV/at]	$\Delta \mathscr{F}$ [meV/a
Silicon T=1500K	-5.0845	-5.0843	-0.2
Al _{0.5} Cu _{0.5} T=600K	-3.7076	-3.7073	-0.3
U liquide T=2500K	-7.4786	-7.4790	0.4

No new DFT computation necessary !

Conclusion Machine-Learning Assisted Canonical Sampling

- Variational inference method based on machine-learning potential **DFT** accuracy with a fraction of the cost of AIMD

Can be extended to other ensembles (multi-thermal, path-integral,...)

Thank you for your attention !