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Materials advances are�
one of the key drivers of innovation...

faster computers

more efficient solar cells

more compact energy storage

more compact data storage



How can one find materials with

targeted properties in the information age?

good transparent conducting material



How can one find materials with

targeted properties in the information age?

good stability   &   band gap > 3.2 eV   &  good carrier mobility



However, till recently, very little information was

actually known about materials properties

• There are about 50,000 to 70,000 known inorganic compounds but

◆ dielectric constants available only for ~300-400 compounds

◆ elastic constants available only for ~200 compounds

◆ band gaps available only for ~200 compounds


◆ … 
 
 
 
 
 

• For almost every property we are below 1% coverage





In fact, materials designers often

operate almost in the dark!



Experimental materials design

mainly proceeds by trial and error



Ab initio calculations have reached the required

maturity for high-throughput materials screening



High-throughput ab initio materials design

O (101) → O (102) compounds

Consider as many compounds as possible, typically O (103) → O (105)

property 1

property 2

property 3

property 4

property 5

High-throughput

Data-Mining



Thanks to such HT calculations,

many materials DB have become available online



Predicting different properties requires

very different computing time
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4.7 million properties; 57 million CPU hours; 730,000 calculations… 



(Big) data and machine learning

are revolutionizing materials science

Vibrational Properties of Solids: A Machine Learning Approach

Introduction

Materials are at the heart of our society. Be it structural materials such as steel or concrete
that bear much of human constructions, be it silicon that has revolutionized the modern
technologies or be it carbon nanotubes that o�ers unique attributes to the biomedical
research, materials have a big impact on our society. From the Stone Age, through the
Bronze and Iron Ages, to the modern silicon ara, it has always been of high importance
to develop novel materials that overcome the current challenges faced by the civilization.
Furthermore, it has been estimated that materials development enabled two-thirds of all
advancements in computation over the past 40 years, and transformed other industries as
well, such as energy storage [1].

Novel materials design and development are often a tedious process, and bringing them to
the market takes approximately 20 years. Moreover, once a material has been adopted, it
is rarely replaced within a short time span owing to the high cost associated to production
infrastructure. Therefore introducing high-performance materials is a key factor for the
success of many technological niches in demand of potential materials.

Figure 0.0.1: The 4 paradigms in science. Empirical, theoretical, computational, and
data-driven. Each paradigm both benefits from and contributes to the others. Image taken
from Ref. [2].

In order to address these problems, the materials science field emerged aiming at the
characterization of materials through process, structure, and properties. Throughout the
years, it has benefit and shaped the four science paradigms, see figure 0.0.1. Initially,
most knowledge was gained through experiments which empirically showed the advantages
of some materials to others. Later, the emergence of a theoretical basis enabled one to
rationally design new compounds. In particular thanks to the formulation of Quantum
Mechanics it was possible to understand the microscopic properties such as the concept of
bond between atoms. However, a precise resolution of this latter for common systems is
very di�cult, as stated by Dirac in 1929 [3]:
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Materials design will require to

take advantage of ALL the DB available online



Each of these databases has

its own user base and specific API



Query examples

•  
 

http://www.crystallography.net/cod/result.php?formula=O2%20Si 
 


•  
 

http://www.materialsproject.org/rest/v2/materials/SiO2/vasp/structure?
API_KEY=YOUR_API_KEY 

•  
 
http://aflowlib.duke.edu/search/API/?species(Si,O),nspecies(2)



Query examples

•  
 

http://www.materialsproject.org/rest/v2/materials/SiO2/vasp/structure 
 
 

•  
 
http://aflow.org/API/aflux/?compound(SiO2) 
 
This returns no response...



Query examples

•  
 

http://www.crystallography.net/cod/result.php?formula=O2%20Si 
 


•  
 
http://aflow.org/API/aflux/?compound(O2Si1) 
 
This returns entries where the unit cell is SiO2, but it does not return Si2O4 
or simulation cells containing more formula units...



Response examples

• http://www.crystallography.net/cod/result.php?formula=O2%20Si



Response examples

• http://www.crystallography.net/cod/result.php?formula=O2%20Si& 
format=json 



Response examples

• http://www.materialsproject.org/rest/v2/materials/SiO2/vasp/structure



Response examples

• http://aflowlib.duke.edu/search/API/?compound(O2Si1) 

• http://aflowlib.duke.edu/search/API/?species(Si,O),nspecies(2)



Response examples

"2020-04-30T07:18:43.634378"

"Materials Project, 2020"



Response examples



Response examples



Discussions lead to define a common API

• The initial release was developed by the participants of the workshops 
“Open Databases Integration for Materials Design” held at:

◆ the Lorentz Center (October 2016)

◆ the CECAM (June 2018, 2019, 2020, and 2021)



The users are now able to search

more materials DBs with the same query…



The users are now able to search

more materials DBs with the same query…



The users are now able to search

more materials DBs with the same query…

• The philosophy of the OPTIMADE query is to enable the structural 
formula to be specified in a straightforward and intuitive manner. 

• The query about SiO2 can each be performed on standardized, versioned 
endpoints (/v1/structures) that permit a common filter format with well-
defined terms (?filter=chemical_formula_reduced="O2Si"):  
 
<optimade_impl_url>/v1/structures?filter=chemical_formula_reduced="O2Si" 

• Furthermore, the response format is exactly the same!



The users are now able to search

more materials DBs with the same query…

• If we explore Group 14 compounds, we can write a simple query (1): 
/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn", "Pb"

• We can further focus on binary materials (2): 

/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn", "Pb" AND nelements=2

• We can discard one element (e.g., Pb) focusing on ternary materials (3): 

/v1/structures?filter=elements HAS ANY "C", "Si", "Ge", "Sn" AND NOT elements  HAS "Pb" 

AND elements LENGTH 3 

Provider N1 N2 N3

AFLOW39, 40 700,192 62,293 382,554
Crystallography Open Database (COD)41, 42 416,314 3,896 32,420
Theoretical Crystallography Open Database (TCOD)16 2,631 296 660
Materials Cloud9, 31, 32 886,518 801,382 103,075
Materials Project21, 29, 43, 44 27,309 3,545 10,501
Novel Materials Discovery Laboratory (NOMAD)22, 45 3,359,594 532,123 1,611,302
Open Database of Xtals (odbx)24, 46 55 54 0
Open Materials Database (omdb)47, 48 19,317 396 3,303
Open Quantum Materials Database (OQMD)49 153,113 11,011 70,252

Table 1. Materials databases with active OPTIMADE API implementations and the number of entries they return for the
filters presented in this paper. The columns Ni provide hyperlinks for running the filters against each provider’s implementation.
The OPTIMADE website provides an up-to-date record of the implementation status of the databases at
https://www.optimade.org/providers-dashboard/. AFLOW, Materials Project, odbx, omdb, and OQMD comprise
computational materials data generated using database specific workflows21, 40, 46, 47, 49. For the purposes of this table, Materials
Cloud results were aggregated across all provided sub-databases. COD and TCOD comprise experimental and theoretical
crystal structure data extracted from the literature. Materials Cloud comprises materials data from computational workflows;
sub-databases group data by research project and can be contributed by users9. NOMAD aggregates computational data from
multiple sources including from several of the repositories listed here.
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Further databases are known to have partial implementations of the OPTIMADE API, including JARVIS.









               OPTIMADE v1.0 (released July 2020)

• REST API for common access to crystal structure databases

◆ Human-readable specification (~20k words)

◆ Based on JSON API

◆ Machine-readable OpenAPI 3.0 schema


• Enables unified access to 25M crystal structures from 14 providers

◆ Federated providers list and discoverability mechanisms

◆ API validation beyond OpenAPI through associated tooling


• Features:

◆ Standardized representation for crystal structures, bibliographic 

references and links

◆ Well-defined grammar/filter language

◆ Introspective /info endpoint for extensibility

◆ Strict response format, but data models are flexible where necessary





/optimade/providers



/optimade/providers



/optimade/links







A GitHub repository is available
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XERUS: An Open-Source Tool for Quick XRD Phase
Identification and Refinement Automation

Pedro Baptista de Castro,* Kensei Terashima,* Miren Garbine Esparza Echevarria,
Hiroyuki Takeya, and Yoshihiko Takano*

Analysis of X-ray diffraction patterns is one of the keystones of materials
science and materials research. With the advancement of data-driven
methods for materials design, candidate materials can be quickly screened for
the study of a desired physical property. Efficient methods to automatically
analyze and identify phases present in a given pattern are paramount for the
success of this new paradigm. To aid this process, the open-source python
package Xray Estimation and Refinement Using Similarity (XERUS) for
semi-automatic/automatic phase identification is presented. XERUS takes
advantage of open crystal structure databases, not relying on proprietary
databases, to obtain crystal structures on the fly, being then chemical space
agnostic. By wrapping around GSASII scriptable, it can automatically simulate
patterns and calculate similarity measures used for phase identification. This
approach is simple and quick but also applicable to multiphase identification,
by coupling the similarity calculations with quick refinements followed by an
iterative peak removal process. XERUS is shown in action in four different
experimental datasets, and also it is benchmarked against a recently proposed
deep learning method for a mixture dataset covering the Li-Mn-O-F chemical
space.

1. Introduction

The establishment of high throughput computational databases
such as theMaterials Project (MP),[1 ] the Open QuantumMateri-
als Database[2 ] (OQMD), and AFLOW[3 ] ignited a new age in ma-
terials science, where the conventional trial-and-error approach
for materials design is replaced by a data-centric approach. More
recently, artificial intelligence-based methods are also becoming
a key driver in this new paradigm of materials design,[4 ] allowing
not only the creation of models for physical property prediction
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with machine learning tools but also allow-
ing the extraction and creation of experi-
mental datasets.[5,6 ]

These new tools, that allow for the quick
screening of candidate materials for syn-
thesis and experimental evaluation, also re-
quire methods that can quickly identify the
synthesis success of the proposed candi-
date. This often involves analyzing the X-
ray diffraction (XRD) of the obtained mate-
rials, a process that is currently one of the
primary bottlenecks of data-driven materi-
als search and automation since it requires
time-consuming human analysis.[7 ]

To solve this issue, several methods for
automating XRD analysis have been pro-
posed, with the most recent approaches
focusing on the use of deep learning
(DL)-assisted models. For example, mod-
els for automatic crystal system and space
group classification,[8,9 ] single phase[10,11 ]

and possible multiphase,[12,13 ] have been
proposed. Here, we highlight as an exam-
ple, the recent work of Syzmanski et al.,[13 ]

where the entire process of simulation
and model building for multiphase classification of the Li-Mn-
Ti-O-F chemical space took approximately 20 h of computational
time, achieving an accuracy of 92% for multiphase classification.
However, thesemodels[9–13 ] usually rely on commercial databases
such as the ICSD.[14 ] Even more, they require simulation of
large synthetic datasets for model training, which are both time-
consuming and restrict the model to a certain chemical space.
On the other hand, candidate-based materials search often in-
volves differentmaterials spanning a large chemical space, where
sometimes even the optimal synthesis route can be unknown.
For example, in the search of newmagnetocaloricmaterials,[15–17 ]

both the work of Bocarsly et al.[16 ] and Court et al.,[17 ] all the pro-
posed candidate materials belonged to different chemical spaces,
for example, Mn-Nb-S and Co-Sc-V. Moreover, in the recent work
of Xiong et al.,[18 ] by the high throughput screening of the MP
database for efficient photocatalysts, 71 different materials were
selected for experimental evaluation and only 11 were success-
fully synthesized, all belonging to different chemical spaces, such
as Ca-Pb-O, Ba-Nb-Mn-O, Sr-In-O, Ca-In-O. In these scenarios,
the use of DL-assisted methods for XRD classification will drasti-
cally increase the preparation time, since large synthetic datasets
followed bymodel training would be necessary for each chemical
space, slowing down the whole data-driven search process.

Adv. Theory Simul. 2022, 2100588 © 2022Wiley-VCH GmbH2100588 (1 of 12)
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Figure 1. Overview of XERUS and its main building blocks, showing how crystal structure is obtained, how the patterns are simulated, and how the data
can be visualized.

Thus, there is a need for an automatic/semi-automatic tool that
allows quick identification/suggestion of possible synthesis re-
sults, which can adapt on the fly to the chemical space. In this
work, we introduce an alternative approach for phase identifica-
tion, by combining similarity calculation of X-ray patterns with
refinements, which does not require any pre-trained model, in
the open-source python framework Xray Estimation and Refine-
ment Using Similarity (XERUS) as an attempt to solve this prob-
lem.
XERUS takes advantage of open crystal structure databases,

not relying on proprietary data sources, enabling it to adapt to the
synthesis chemical space on the fly. In this manner, XERUS can
suggest pre-refinedmulti/single phase results and provide an in-
terface for optimizing one-shot Rietveld analysis. It was designed
to be used either in Jupyter notebook,[19 ] as an interactive tool
with researchers, or to be adapted so it can be plugged in directly
into experimental workflows, providing a quick analysis of the re-
sults. In the following sections, the core functions of XERUS and
the method it uses to attempt phase identification are described.
We also present analysis results for four different systems, and
we benchmark the results against the mixture dataset of ref. [13].

2. XERUS Description

XERUS will be freely available on https://www.github.com/
pedrobcst/Xerus/
Below, we describe the main three main building blocks of

XERUS.

• Crystal Structure Management: Responsible for querying the
MP,OQMD,AFLOW, and theCrystallographicOpenDatabase
(COD), parsing and caching the structures for given chemical
space.

• Backend: Responsible for pattern simulation, structure refine-
ment, optimization, and visualization via the scripting inter-
face of GSASII. Provides the interface for phase identification.

• Interface: Allows for ease of visualizing and analyzing the ob-
tained results, mostly through notebooks or by exporting the
data.

These three building blocks are summarized in Figure 1. Figure 2
shows the workflow of how XERUS works: from receiving the
data, elements, and directory to save the results as input, going
through phase identification, and finally reporting the results to
the user, while Figure 3 shows all the steps done by XERUS in
the phase identification process. All these steps will be discussed
in the sections below.

2.1. Preparation

To easily adapt to any given chemical space, XERUS takes advan-
tage of the computational databases API, such as AFLUX,[20 ] the
Materials Project API[21 ] (MAPI), interfaced using pymatgen,[22 ]

the OQMD API, and also the COD[23 ] REST API, to obtain the
relevant crystal structures for the space. Here, XERUS also uses
a local MongoDB[24 ] server to locally cache the structures for fu-
ture uses.

Adv. Theory Simul. 2022, 2100588 © 2022Wiley-VCH GmbH2100588 (2 of 12)
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                           supports OPTIMADE

• During the “CECAM brainstorming meeting on Data Driven Science”, 

which took place at CECAM Headquarters (25 and 26 of March 2019), it 

was decided that the CECAM would support the OPTIMADE initiative.


• A post-doctoral fellow will be hired for an initial period of 12 months to 

work on specific tasks dedicated to expanding the current developments in 

OPTIMADE to classical molecular dynamics or bio-simulations


• Longer-term actions:

◆ creating a service to integrate and interrogate efficiently the different 

databases

◆ creating and maintaining a dictionary of metadata
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Introduction
Machine learning is a branch of computer science concerned with algorithms that can develop models
from the available data, reveal trends and correlation in this data, and make predictions about unavailable
data. The predictions rely on data mining, the process of discovering patterns in large data sets using
statistical methods. Machine learning methods have been recently successful in process automation,
natural language processing, and computer vision, where large databases are available to support data-
driven modeling efforts. These successes also sparked discussions about the potential of ‘Artificial
Intelligence’ in science1 and ‘The Fourth Paradigm’2 of data-driven scientific discovery. In materials
science, applying artificial intelligence to data-driven materials discovery is important, because new
materials often underpin major advances in modern technologies. For example in advanced energy
technologies, efficient solid state lighting was enabled by the use of gallium nitride in light-emitting
diodes, electric cars were brought to life by intercalation materials used in lithium-ion batteries, and
modern computers would not have been possible without the silicon material.

In computational materials science3, machine learning methods have been recently used to predict
structure4, stability5, and properties6 of inorganic solid state materials. These results had been enabled by
advances in simulation tools at multiple length scales7. The resulting simulated materials data are stored
in ever-growing publically-accessible computational property databases8–10. In contrast to computations,
experimental materials discovery using machine learning is limited by the dearth of large and diverse
datasets (Fig. 1). Large experimental datasets like the Inorganic Crystal Structure Database (ICSD)11

contain 100,000's of entries, but are not diverse enough, as they contain only composition and structure
of the materials. The diverse datasets like Landolt–Börnstein (http://materials.springer.com/)12 or
AtomWorks (http://crystdb.nims.go.jp/index_en.html)13 contain 100's to 1000's of entries for different
properties, so they are not large enough for training modern machine learning algorithms. Furthermore,
none of these datasets contains synthesis information such as temperature or pressure, which is critical to
making materials with target properties. Thus, machine learning for experimental materials research so
far has focused on adoption of existing algorithms suitable for relatively small but complex datasets, such
as collections of x-ray diffraction patterns14, microscopy images15, or materials microstructure16.

One potential machine learning solution to create large and diverse materials datasets is natural
language processing17,18 from research articles published in scientific literature. However, the
overwhelming majority of journal publications in experimental materials science is limited to what
authors subjectively perceive as the most interesting of results, leading to large amounts of unpublished
‘dark data’19. Furthermore, the published papers are often biased towards positive research results20, since
the publication of ‘failed’ experiments is discouraged in scientific literature. Such biased exclusion of
negative results is a problem for machine learning, because many algorithms require both positive and
negative results for efficient training. Finally, very small fraction of these journal article publications are
linked to the corresponding publications of underlying data, despite the increasing requirements from
funding agencies21 and encouragement from scientific journals22 to make research data available to the
public.

Here we describe our progress towards the High Throughput Experimental Materials (HTEM)
Database (htem.nrel.gov). The HTEM DB is the first publicly available large collection of experimental

Figure 1. Schematic scatter plot of the size vs. diversity of materials data in existing databases. The
computational databases (red circles) are large and diverse. In contrast, experimental databases are either large
or diverse, limiting application of machine learning algorithms.
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Opportunities

obtained from output files generated by BoltzTraP. The
values of μ were converted to carrier doping densities
n = -N/Vcell [cm

−3], where Vcell is the unit cell volume.
We evaluated τel for each T in each sample using

experimental Seebeck coefficient Sexp and experimen-
tal electrical conductivity σexp. From the calculated S–
n curve, we estimated n, the carrier doping density
that corresponds to Sexp. If the S–n curve is bell-
shaped due to the bipolar effect, we selected the
solution with higher n, unless bipolar effects were
obvious in the experimental data. From the n and
the calculated n-dependence of σ/τel, we evaluated
(σ/τel)calc to estimate τel from

τel ¼
σexp

σ=τelð Þcalc
: (2)

With this τel, we estimated κph using

κph ¼ κexp $ τel κel=τelð Þcalc: (3)

Results and discussion

From Scopus [26], we retrieved with the keyword
‘thermoelectric’ a list of 47,936 papers published
between 1875 and 2015. Our original material-name
detection script selected 18,585 papers from the list,
and among them we accessed the full-text of 14,835
papers to select those that contain plots of interest
and to classify them into material families.

The screenshot of our original web system
Starrydata2 is shown in Figure 1. For each record of
a paper, Starrydata2 stores the bibliographic informa-
tion, the numerical data extracted from the plots, and
the chemical compositions of the corresponding sam-
ples. The system only shows the numerical data and
the replots, without storing the original full-text and
the plot images, which are often protected by publish-
er’s copyright. The users can generate lists of pub-
lications of interest, and browse the data collected by
all users. They can download them as a data file,

either in spreadsheet-like format (CSV and JSON)
or in a relational-database-like format (JSON only).
Our data visualization system can display the data
files in various formats including line plots, heat
maps, and multiple scatter plots.

Using Starrydata2, we succeeded in attaining
a considerable improvement in the speed of manual
data collection. We rejected the selection of papers
and samples in previous data collections to increase
both the number of recorded samples and the speed
of data collection. Currently, we have collected the
data for 11,506 samples in 9509 figures published in
1957 papers. About 500–1000 samples are added each
month. Since the experimental data for a sample
usually appear in multiple figures, we manually
related these data from an identical sample by com-
prehension of the paper. By using the recent version
of our web system, a single data collector succeeded
to process 166 papers (806 plots, 1148 samples, 3251
datasets and 89,210 data points) in 25 working days.
On average, 1.03 papers (5.00 plots, 7.12 samples,
20.2 datasets, 553 data points) were processed
per hour. This time includes the time to read the
text to identify the chemical composition of each
sample. By increasing the number of data collectors,
much more experimental data on other material
families will be uploaded in our database.

Figure 2 shows a part of our experimental dataset
on rock-salt-type thermoelectric materials in
a comparison with the UCSB Thermoelectric data
[12], the largest literature-based experimental dataset
on thermoelectric properties. Each data point, which
corresponds to one experimental sample, is entered
in a plot of P against κ. Our dataset contained 434
samples of PbTe, PbSe, PbS, SnTe and their solid
solutions from 64 publications [33–86], whereas
UCSB Thermoelectric data contained 8 such samples.
The large diversity of the scatter plot is a result of the
non-selective character of our dataset, which accepted
many samples with bad properties. In contrast, the

Figure 1. Concept of plot mining in the Starrydata2 web system. An example paper [32] and the screenshots of Starrydata2 web
system are presented. Reproduced with permission from Thermoelectrics Society of Japan.

Sci. Technol. Adv. Mater. 20 (2019) 514 Y. KATSURA et al.

[Y. Katsura et al., Sci. Technol. Adv. Mater. 20, 511 (2019)]

Structures

Methods

Properties
Exp.

DFT
EAM

…

prototypes 
(bcc, fcc, …)

disordered
interfaces
surfaces

…

Equilibrium 
properties:


 

energy, forces, 
stresses, …

Response 
properties:


 

elastic, dielectric, 
vibrational, …

…





Opportunities

• OPTIMADE would clearly benefit from semantically enabling the system 
using an ontology, both for search as well as for integrating information 
from the underlying databases. 
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               What's next for OPTIMADE?

• Semantic interoperability through an ontology

◆ "An Ontology for the Materials Design Domain", arXiv:2006.07712 

(H. Li, R. Armiento, and P. Lambrix)

◆ Fostering links and synergy with:

◼︎European Materials Modelling Ontology (EMMO)

◼︎Work that has already been done in the IUCr (International Union of 

Crystallography) about the CIF standard (CIF2)

◆ https://github.com/Materials-Consortia/ontology 


• Expanding to classical molecular dynamics and bio-simulations 
Platform for fitting machine-learned interatomic potentials

◆ Workshop in 30 May-3 June 2021 at CECAM + Digital 

https://www.cecam.org/workshop-details/1120 
Contacts:	gian-marco.rignanese@uclouvain.be 

ColabFit

https://arxiv.org/abs/2006.07712
https://github.com/Materials-Consortia/ontology
https://www.cecam.org/workshop-details/1120
mailto:gian-marco.rignanese@uclouvain.be
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Casper Andersen, Thomas Archer, Rossella Aversa, Rickard Armiento, 
Evgeny Blokhin, Gareth Conduit, Davide Di Stefano, Alexander Dorsk, 
Claudia Draxl, Shyam Dwaraknath, Suleyman Er, Matthew Evans, 
Adam Fekete, Marco Fornari, Matteo Giantomassi, Abhijith Gopakumar, 
Marco Govoni, Saulius Gražulis, Geoffroy Hautier, Vinay Hedge, 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Fawzi Mohamed, Andrew Morris, Arash Mostofi, Nicolas Mounet, 
Corey Oses, Guido Petretto, Thomas Purcell, Giovanni Pizzi, 
Francesco Ricci, Gian-Marco Rignanese, Matthias Scheffler, 
Markus Scheidgen, Daniel Speckhard, Leopold Talirz, Cormac Toher, 
Daniele Tomerini, Martin Uhrin, Pierre Villars, David Waroquiers, 
Donald Winston, Chris Wolverton, Yibin Xu, Xiaoyu Yang



The amount of data available in the DBs

depends on the computing time for each property
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For reducing the computational cost,

machine learning may be very handy

calculations on known crystal 
structures and predict new ones 
automatically5. 

Researchers from outside 
the original group were getting 
interested in high-throughput 
computations as well. One such 
researcher was chemical engineer 
Jens Nørskov, who started using 
them to study catalysts for break-
ing down water into hydrogen 
and oxygen6 while he was at the 
Technical University of Denmark 
in Lyngby, and later expanded the 
work as director of the SUNCAT 
Center for the computational 
study of catalysis at Stanford Uni-
versity in California. Another 
was Marzari, who was part of a 
large team developing Quantum 
Espresso: a program for quan-
tum-mechanics calculations that 
was launched7 in 2009. That is the 
code running on his mobile phone 
in the video. 

MATERIALS GENOMICS
Still, computational materials 
science did not become main-
stream until June 2011, when 
the White House announced the 
multimillion-dollar Materials 
Genome Initiative (MGI). “When 
people at the White House became 
familiar with Ceder’s work they 
got very excited,” says James War-
ren, a materials scientist at the US 
National Institute of Standards 
and Technology and executive secretary of the MGI. “There was a gen-
eral awareness that computer simulations had got to the point where 
they could have a real impact on innovation and manufacturing,” he 
says — not to mention the ‘genomics’ name, “which was evocative of 
something grand.” 

Since 2011, the initiative has invested more than US$250 million 
into software tools, standardized methods to collect and report experi-
mental data, centres for computational materials science at major uni-
versities and partnerships between universities and the business sector 
for research on specific applications. But it is unclear how far this lar-
gesse has actually advanced the science. “The initiative brought a lot 
of good things, but also some re-branding,” says Ceder. “Some groups 
started calling their research genomics this and genomics that, even 
though it had little to do with it.” 

One thing the MGI definitely did do, however, was to help Ceder 
and others realize their vision of an online database of materials prop-
erties. In late 2011, Ceder and Persson relaunched their Materials 
Genome Project as the Materials Project — having been asked by the 
White House to give up the ‘genome’ label to avoid confusion with the 
national effort. The following year, Curtarolo posted his own database, 
called AFLOWlib, based on the software he had developed at Duke8. 
And in 2013, Chris Wolverton, a materials researcher at Northwest-
ern University in Evanston, Illinois, launched the Open Quantum 
Materials Database (OQMD)9. “We borrowed the general idea from 
the Materials Project and AFLOWlib,” says Wolverton, “but our soft-
ware and data are homegrown.” 

All three of these databases share a core of around 50,000 known 

materials taken from a widely 
used experimental library, the 
Inorganic Crystal Structure Data-
base. These are solids that have 
been created at least once in a lab-
oratory and described in a paper, 
but whose electronic or magnetic 
properties may have never been 
fully tested; they are the starting 
point from which new materials 
can be derived.

Where the three databases 
differ is in the hypothetical 
materials they include. The Mate-
rials Project has relatively few, 
starting with some 15,000 com-
puted structures derived from 
Ceder’s and Persson’s research 
on lithium batteries. “We only 
include them in the database if 
we’re confident the calculations 
are accurate, and if there is a rea-
sonable chance that they can be 
made,” says Persson. Another 
130,000 or so entries are struc-
tures predicted by the Nanopo-
rous Materials Genome Center 
at the University of Minnesota in 
Minneapolis. The latter focuses 
on zeolites and metal–organic 
frameworks: sponge-like materi-
als with regularly repeating holes 
in their crystal structures that can 
trap gas molecules and could be 
used to store methane or carbon 
dioxide. 

AFLOWlib is the largest data-
base, featuring more than a mil-

lion different materials and about 100 million calculated properties. 
That’s because it also includes hundreds of thousands of hypothetical 
materials, many of which would exist for only a fraction of a second 
in the real world, says Curtarolo. “But it pays off when you want to 
predict how a material can actually be manufactured,” he says. For 
example, he is using data from AFLOWlib to study why some alloys 
can form metallic glass — a peculiar form of metal with a disordered 
microscopic structure that gives it special electric and magnetic prop-
erties. It turns out that the difference between good glass formers and 
bad ones depends on the number and energies of unstable crystal 
structures that ‘compete’ with the ground state while the alloy cools 
down10. 

Wolverton’s OQMD includes around 400,000 hypothetical 
materials, calculated by taking a list of crystal structures commonly 
observed in nature and ‘decorating’ them with elements chosen from 
almost every part of the periodic table9. It has a particularly wide 
coverage of perovskites — crystals that often display attractive prop-
erties such as superconductivity and that are being developed for use 
in solar cells as microelectronics. As the name suggests, this project 
is the most open of the three: users can download the entire database, 
not just individual search results, onto their computer. 

All of these databases are works in progress, and their curators still 
spend a good share of their time adding more compounds and refining 
the calculations — which, they admit, are far from perfect. The codes 
tend to be quite good at predicting whether a crystal is stable or not, 
but less good at predicting how it absorbs light or conducts electric-
ity — to the point of sometimes making a semiconductor look like a 

Arti!cial intelligence can help researchers to comb 
through vast numbers of materials to !nd just the 

ones they need for the application at hand.

INTELLIGENT SEARCH

Start with lab data and 
computer modelling of 

known materials.

Machine learning extracts 
common patterns.

Results guide 
prediction of new 

materials.

Researchers look for 
materials with speci!c, 
predicted properties.

Chemists try to make 
the candidates for 
real-world testing.
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Computationally demanding material properties

are precisely those with little available data

The predictive power of the model

depends on the amount of data available
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Material Optimal Descriptor Network (MODNet)

• Concept: feedforward neural network with an optimal set of descriptors.


• Idea: Feature selection by relevance-redundancy algorithm


◆ Prior physical knowledge and constraints are taken into account by 
adopting physically-meaningful features.


◆ This reduces the optimization space without relying on a massive 
amount of data.


• Bonus: Novel architecture that learns on multiple properties



To be relevant, the selected features should present

some kind of interrelation with the target property

Target Target

Feature 1 Feature 2



Pearson correlation coefficient is a measure of

the interrelation between two variables

Positive correlation

No correlation

Negative correlation

R=1 R=0.5R=0.9

R=-0.5 R=-1R=-0.9

Perfect High Low

Low High Perfect
R=0



Pearson correlation coefficient

presents, however, a series of limitations

R=0



In MODNet, feature selection is based on

the Normalized Mutual Information (NMI)

• The mutual information (MI) of two random variables is a measure of the 
mutual dependence between the two variables. 
It quantifies the "amount of information” (entropy) obtained about one 
random variable through observing the other random variable.


• Their Normalized Mutual Information  is 

bounded between 0 ( )  and 1 ( )

NMI(X, Y ) =
MI(X, Y )

(H(X) + H(Y ))/2

H(X) H(Y )
MI(X,Y )

H(X|Y ) H(Y|X )

H(X,Y )

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



The feature f having the highest NMI with

the target variable y will be chosen the first one

• This provides some understanding of the underlying physics. 
Indeed, it pinpoints the most important and complementary variables.


• For instance, the vibrational entropy is found to be strongly related to

◆ the inter-atomic bond length

◆ the valence range of the constituent elements (ionicity of the bond).

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]



For the next chosen features,

redundancy should also be avoided 

• To this end, we define a relevance and redundancy RR score: given


◆ a subset of selected features  extracted from the set  

◆ another feature f  

 
 
 
where p and c are determine the relevance/redundancy balance.


• In practice, varying p and c dynamically seems to work better, as 
redundancy is a bigger issue with a small amount of features.


• The selection proceeds until the number of features reaches a threshold 
(fixed arbitrarily or, better, optimized to minimize the model error).

ℱs ℱ

RR( f ) =
NMI( f, y)

[ maxfs∈ℱS (NMI( f, fs))]
p

+ c



MODNet introduces the possibility of

learning on multiple properties simultaneously

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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MODNet performs very well

on the curated MatBench test suite

[A. Dunn et al., npj Comput. Mater 6, 138 (2020); https://github.com/hackingmaterials/matbench]

MatBench



How can we predict the phase stability of

polymorphs at different temperatures?

• At T=0K: for exemple, the Cu-O system 
 
 
 
 
 
 
 
 
 

• At T>0K, the vibrational entropy needs to be taken into account. 
This can be done by DFPT but it is very demanding.



• Automatic parallel configuration


• Automatic error handling


• Perturbations fully parallelized


• Store the results on a Database

An automatic workflow was developed



The vibrational properties

were calculated for 1521 semiconductors

• The dataset includes:

◆ phonon band structure

◆ LO-TO splitting

◆ phonon DOS

◆ Born effective charges

◆ dielectric tensor

◆ derived quantities: 

ΔF, ΔEph , Cv and S


• The dataset is openly available!

G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.J. van Setten, X. Gonze, 
K.A. Persson, G. Hautier, and G.-M. Rignanese, Sci. Data 5, 180065 (2018).



 

… but only for those 1521 semiconductors

The vibrational properties are

available on the Materials Project website



How can we predict the phase stability of

polymorphs at different temperatures?

• At T=0K: for exemple, the Cu-O system 
 
 
 
 
 
 
 
 
 

• At T>0K, the vibrational entropy needs to be taken into account. 
Let's use machine learning.



Early attempts with ML were based on

RF using only chemical composition features
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[F. Legrain et al., Chem. Mater. 29, 6220 (2017)]
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Including structural features

clearly improves the predicting power

NB:	 Performing feature selection on the input space has no effect on the results 
as a RF intrinsically selects optimal features while learning.
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Neural-network models perform better than

RF approaches whatever the size of the data set

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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Feature selection is really important

especially for small training size

[P.-P. De Breuck et al., npj Computational Materials 7, 83(2021)]
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and provides a single model for multiple properties

The joint-learning approach (m-MODNet)

shows on average a slight improve in accuracy



In particular, it is possible to obtain curves of

the thermodynamic properties vs. temperature



Thanks to this approach, we can build

temperature dependent stability graphs
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